首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Dopamine can form reactive oxygen species and other reactive metabolites that can modify proteins and other cellular constituents. In this study, we tested the effect of dopamine oxidation products, other generators of reactive oxygen species, and a sulfhydryl modifier on the function of glutamate transporter proteins. We also compared any effects with those on the dopamine transporter, a protein whose function we had previously shown to be inhibited by dopamine oxidation. Preincubation with the generators of reactive oxygen species, ascorbate (0.85 m M ) or xanthine (500 µ M ) plus xanthine oxidase (25 mU/ml), inhibited the uptake of [3H]glutamate (10 µ M ) into rat striatal synaptosomes (−54 and −74%, respectively). The sulfhydryl-modifying agent N -ethylmaleimide (50–500 µ M ) also led to a dose-dependent inhibition of [3H]glutamate uptake. Preincubation with dopamine (100 µ M ) under oxidizing conditions inhibited [3H]glutamate uptake by 25%. Exposure of synaptosomes to increasing amounts of dopamine quinone by enzymatically oxidizing dopamine with tyrosinase (2–50 U/ml) further inhibited [3H]glutamate uptake, an effect prevented by the addition of glutathione. The effects of free radical generators and dopamine oxidation on [3H]glutamate uptake were similar to the effects on [3H]dopamine uptake (250 n M ). Our findings suggest that reactive oxygen species and dopamine oxidation products can modify glutamate transport function, which may have implications for neurodegenerative processes such as ischemia, methamphetamine-induced toxicity, and Parkinson's disease.  相似文献   

2.
Glutathione Efflux from Cultured Astrocytes   总被引:2,自引:6,他引:2  
Abstract: The characteristics and kinetics of GSH efflux from the monolayer culture of rat astrocytes were investigated. GSH efflux was dependent on temperature, with a Q 10 value of 2.0 between 37 and 25°C. The GSH efflux rate showed a hyperbolic dependency on the intracellular GSH concentration. The data were fitted well to the Michaelis-Menten model, giving the following kinetic parameter values: K m = 127 nmol/mg of protein; V max = 0.39 nmol/min/mg of protein. p -Chloromercuribenzenesulfonic acid, a thiol-reactive agent impermeable to the cell membrane, lowered the GSH efflux rate by 25% without affecting the intracellular GSH content. These results suggest that a carrier is involved in the efflux of GSH. The GSH content of cultured astrocytes showed a marked increase when the cells were exposed to insults, such as sodium arsenite, cadmium chloride, and glucose/glucose oxidase that lead to the generation of hydrogen peroxide. The increase in GSH content was attributed to the induction of the cystine transport activity by the agents. Although the intracellular GSH concentration and GSH efflux were increased, the kinetics of GSH efflux were not affected by those agents that imposed the oxidative stress. Because the K m value is very large, it is suggested that astrocytes release GSH depending on their GSH concentration in a wide range.  相似文献   

3.
The effect of x-rays on GSH and GSSG levels in blood was studied in mice and humans. An HPLC method that we recently developed was applied to accurately determine GSSG levels in blood. The glutathione redox status (GSH/GSSG) decreases after irradiation. This effect is mainly due to an increase in GSSG levels. Mice received single fraction radiotherapy, at total doses of 1.0 to 7.0 Gy. Changes in GSSG in mouse blood can be detected 10 min after irradiation and last for 6 h within a range of 2.0–7.0 Gy. The highest levels of GSSG (20.1 ± 2.9 ), a 4.7-fold increase as compared with controls) in mouse blood are found 2 h after radiation exposure (5 Gy). Breast and lung cancer patients received fractionated radiotherapy at total doses of 50.0 or 60.0 Gy, respectively. GSH/GSSG also decreases in humans in a dose–response fashion. Two reasons may explain the radiation-induced increase in blood GSSG: (a) the reaction of GSH with radiation-induced free radicals resulting in the formation of thyl radicals that react to produce GSSG; and (b) an increase of GSSG release from different organs (e.g., the liver) into the blood. Our results indicate that the glutathione redox ratio in blood can be used as an index of radiation-induced oxidative stress. © 1997 Elsevier Science Inc.  相似文献   

4.
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.  相似文献   

5.
6.
Abstract: In this study we examined the effect on oligodendroglial survival of exogenous cystine deprivation. Oligodendroglia isolated from mixed glial primary cultures derived from brains of 1-day-old rats, and then grown for 3 days, were markedly dependent on extracellular cystine for survival. The EC50 values for cystine for a 24-h exposure ranged from 2 to 65 µ M . After 6 h of cystine deprivation, the cellular glutathione level decreased to 21 ± 13% of the control. Free radical scavengers (α-tocopherol, ascorbate, idebenone, and N-tert -butyl-α-phenylnitrone) were protective against cystine deprivation but had no effect on the glutathione level. An iron chelator, desferrioxamine mesylate, also was protective. These findings suggest that intracellular hydroxyl radicals are important for this toxicity. In contrast to the observations in 3-day-old cultures, the dependence on exogenous cystine for cell viability was not observed consistently in oligodendroglia cultured for 6 days before the onset of cystine deprivation. Several observations suggested that this loss of cystine dependence was due to a diffusible factor. Sensitivity to the toxicity of cystine deprivation in day 6 cultures increased as the volume of medium was increased from 0.3 to 2 ml. Furthermore, preincubation of cystine-depleted medium with astrocyte cultures eliminated the toxicity of the cystine deprivation. HPLC assay of the conditioned cystine-depleted medium showed no significant change in cystine or cysteine concentration. We conclude that oligodendroglia are highly susceptible to cystine deprivation in day 3 cultures and that this susceptibility is due to the accumulation of intracellular free radicals in the setting of glutathione depletion. The resistance of day 6 oligodendroglial cultures is caused at least in part by a diffusible factor.  相似文献   

7.
Glutathione is the most abundant of the low-molecular-mass molecules that provide reducing equivalents that protect cells from oxidative stress. We used immunoelectron microscopy to investigate glutathione distribution in normal and oxidatively stressed cells. Here, for the first time, we show that reduced glutathione is distributed relatively evenly throughout the cell, with the exception of the lumen of the rough endoplasmic reticulum, where little is detected. Oxidant exposure, either to 0.1 mM diamide or ethycrinic acid, eventually caused cellular glutathione depletion. However, despite entering a cell within seconds, both oxidants required hours to dramatically affect glutathione levels in the majority of cells in a population. Interestingly, cells within a homogeneous cell line population lost glutathione at different rates. Structural changes associated with oxidative stress, such as increased vacuolization and membrane blebbing, were correlated with glutathione depletion. Oxidant-exposed cells that appeared normal had higher glutathione levels than those within the same population that appeared stressed. The last reserves of cellular glutathione were found within mitochondria.  相似文献   

8.
为研究谷胱甘肽(GSH)在乳酸乳球菌NZ9000抗氧胁迫中的生理作用,以能够生物合成GSH的重组菌NZ9000(pNZ3203)为实验菌株进行了研究。结果表明,在较高H2O2胁迫剂量(150mmol/L H2O2,15min)下,前培养3h、5h和7h(即乳酸链球菌素诱导1h、3h和5h)时的重组菌细胞的存活率分别是处于相应生长时期对照菌NZ9000(pNZ8148)的1.8±0.1倍、2.6±0.1倍和2.9±0.3倍。表明GSH可以提高宿主菌NZ9000对H2O2所引发氧胁迫的抗性。GSH还可以提高宿主菌NZ9000对其它化学物质(如超氧阴离子自由基生成剂———甲萘醌)所引发氧胁迫的抗性。这表现在经20mmol/L甲萘醌处理60min后,前培养5h(即乳酸链球菌素诱导3h)时重组菌细胞的存活率是对照菌的6.2±0.1倍。由此表明,通过代谢工程手段在菌株NZ9000中引入GSH合成能力,可以提高宿主菌对氧胁迫的抗性。  相似文献   

9.
Oxidative stress is a hallmark of Alzheimer disease (AD) but this has not been studied in young healthy persons at risk of the disease. Carrying an Apo ε4 allele is the major genetic risk factor for AD. We have observed that lymphocytes from young, healthy persons carrying at least one Apo ε4 allele suffer from reductive rather than oxidative stress, i.e., lower oxidized glutathione and P-p38 levels and higher expression of enzymes involved in antioxidant defense, such as glutamylcysteinyl ligase and glutathione peroxidase. In contrast, in the full-blown disease, the situation is reversed and oxidative stress occurs, probably because of the exhaustion of the antioxidant mechanisms just mentioned. These results provide insights into the early events of the progression of the disease that may allow us to find biomarkers of AD at its very early stages.  相似文献   

10.
11.
铜绿假单胞菌由于对抗生素的固有耐药和多重抗药性, 已成为医院内感染的重要病原菌之一。谷胱甘肽是细胞内最重要的抗氧化剂, 保护细胞免受氧化压力的损害。但是在铜绿假单胞菌感染的组织中, 由于绿脓菌素等致病因子的存在, 可以导致谷胱甘肽的水平降低。同时, 谷胱甘肽又可以增强绿脓菌素的致病性。本文就谷胱甘肽与铜绿假单胞菌关系的最新研究进展并结合作者的工作, 对上述问题进行了综述和探讨。  相似文献   

12.
The susceptibility of intestinal alkaline phosphatase to dl-buthionine-S,R-sulfoximine was investigated in chicks fed a commercial diet. The results show that dl-buthionine-S,R-sulfoximine produced inhibition of intestinal alkaline phosphatase activity. This effect showed dose- and time-dependency and it was caused by either in vivo dl-buthionine-S,R- sulfoximine administration or in vitro dl-buthionine-S,R-sulfoximine incubation with villus tip enterocytes. dl-Buthionine-S,R-sulfoximine did not act directly on intestinal alkaline phosphatase but it provoked glutathione depletion which led to changes in the redox state of the enterocyte as shown by the production of free hydroxyl radicals and an incremental increase in the carbonyl content of proteins. The reversibility of the buthionine sulfoximine effect on intestinal alkaline phosphatase was proved by addition of glutathione monoester to the duodenal loop.  相似文献   

13.
Glutathione (GSH) is one of the major antioxidants in the brain. GSH is secreted by astrocytes and this extracellular GSH is used by neurones to maintain and increase their intracellular GSH levels. For efficient GSH trafficking between astrocytes and neurones, GSH needs to be maintained in the reduced form. In model systems, GSH trafficking has been shown to be essential for neuroprotection against a variety of stress conditions. Previously we and others have shown that GSH and thiols are unstable in cell culture media and are easily oxidised. In the present study it is shown that nanomolar concentrations of copper (II) ions can cause decay of GSH in cell culture media. Increased free or redox active copper has been implicated in a variety of diseases and degradation of extracellular GSH is a possible mechanism by which it exerts its harmful effects. Rat astrocytes, a human astrocytoma cell line and astrocyte-conditioned media, in the absence of cells, are able to retard this copper-catalysed decay of GSH and maintain GSH in its reduced form. The protective effect of astrocytes appears to be a combination of copper removing and antioxidant mechanisms. The importance of these protective mechanisms is discussed with regards to neurodegenerative diseases.  相似文献   

14.
Abstract The tripeptide γ-l-glutamyl-l-cystinylglycine (glutathione) is one of the major antioxidant molecules of cells and is thought to play a vital role in buffering the cell against reactive oxygen species and toxic electrophiles. We wished to determine the role of glutathione in the protection of the yeast Saccharomyces cerevisiae against oxidative stress. This study shows that glutathione is an important antioxidant molecule in yeast, with γ-glutamylcysteine synthetase ( gshI ) mutants, deficient in glutathione synthesis, being hypersensitive to H2O2 and Superoxide anions in both exponential- and stationary-phase cultures. Despite this, these mutants are still able to induce adaptive stress responses to oxidants.  相似文献   

15.
The aim of the present study is to evaluate the oxidative damage in rats of different ages. Weaned rats of 25 g and adults of 300 g were used in groups of 6, a single i.p. dose of morphine sulfate of 3, 6 or 12 mg/kg was administered. All animals were sacrificed to measure GSH and 5-HT levels in brain by liquid chromatography, as well as Na+, K+-ATPase and total ATPase enzymatic activity. 5-HT levels decreased significantly (p<0.05) in adult animals that received 3 and 6 mg morphine. Na+, K+-ATPase activity increased significantly (p<0.05) in all groups of weaned animals. In adult animals, Na+, K+-ATPase and total ATPase partially diminished. GSH levels diminished significantly (p<0.05) both in weaned and in adult groups. The results indicate age-induced changes in cellular regulation and biochemical responses to oxidative stress induced by morphine.  相似文献   

16.
17.
Thiol redox state (TRS) refers to the balance between reduced thiols and their corresponding disulfides and is mainly reflected by the ratio of reduced and oxidized glutathione (GSH/GSSG). A decrease in GSH/GSSG, which reflects a state of thiol oxidative stress, as well as thiol modifications such as S-glutathionylation, has been shown to have important implications in a variety of cardiovascular diseases. Therefore, research models for inducing thiol oxidative stress are important tools for studying the pathophysiology of these disease states as well as examining the impact of pharmacological interventions on thiol pathways. The purpose of this study was to evaluate the use of a dithiocarbamate derivative, 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA), as a pharmacological model of thiol oxidative stress by examining the extent of thiol modifications induced in H9c2 rat cardiomyocytes and its impact on cellular functions. The extent of thiol oxidative stress produced by 2-AAPA was also compared to other models of oxidative stress including hydrogen peroxide (H2O2), diamide, buthionine sulfoximine, and N,N׳-bis(2-chloroethyl)-N-nitroso-urea. Results indicated that 2-AAPA effectively inhibited glutathione reductase and thioredoxin reductase activities and decreased the GSH/GSSG ratio by causing a significant accumulation of GSSG. 2-AAPA also increased the formation of protein disulfides as well as S-glutathionylation. The alteration in TRS led to a loss of mitochondrial membrane potential, release of cytochrome c, and increase in reactive oxygen species production. Compared to other models, 2-AAPA is more potent at creating a state of thiol oxidative stress with lower cytotoxicity, higher specificity, and more pharmacological relevance, and could be utilized as a research tool to study TRS-related normal and abnormal biochemical processes in cardiovascular diseases.  相似文献   

18.
Manganese (Mn) is neurotoxic: the underlying mechanisms have not been fully elucidated. l-Buthionine-(S,R)-sulfoximine (BSO) is an irreversible inhibitor of γ-glutamylcysteine synthetase, an important enzyme in glutathione (GSH) synthesis. To test the hypothesis that BSO modulates Mn toxicity, we investigated the effects of treatment of U-87 or SK-N-SH cells with MnCl2, BSO, or MnCl2 plus BSO. We monitored cell viability using MTT assay, staining with HO-33342 to assess live and/or apoptotic cells, and staining with propidium iodide (PI) to assess necrotic cells; we also measured cellular glutathione. Our results indicate decreased viability in both cell types when treated with MnCl2 or BSO: Mn was more toxic to SK-N-SH cells, whereas BSO was more toxic to U-87 cells. Because BSO treatment accentuated Mn toxicity in both cell lines, GSH may act to combat Mn toxicity. Thus, further investigation in oxidative stress mediated by glutathione depletion will unravel new Mn toxicity mechanism(s).  相似文献   

19.
A mutant rat GPX1 (a cytosolic predominant form), in which the selenocysteine residue in the catalytic center was replaced by cysteine, was prepared and an antibody against the mutant enzyme was raised. The resultant antibody specifically reacted with rat GPX1 and was, together with the Glutathione reductase (GR) antibody, used in a Western blot analysis and immunohistochemistry experiments. To elucidate the physiological coupling of these enzymes under oxidative stress which accompanies the birth, developmental changes of the protein levels and enzymatic activities of GR and GPX1 were examined for lungs and kidneys from prenatal fetus to adult rats. The expression of GR was already evident at the prenatal stage and remained high in lungs at all stages. However, GR activity in kidneys gradually increased after birth reaching maximal levels at adulthood. An immunohistochemical study showed that GR was strongly bound to the bronchial epithelia in lungs and the epithelial cells of renal tubes. GPX1 was expressed in the renal tube epithelial cells and its level gradually increased after birth in a manner similar to that of GR. The expression of GPX1 in the lungs was, on the other hand, variable and occurred in some alveolar cells and bronchial epithelia only at restricted periods. It preferentially localized in nuclei at a late stage of development. Thus, the expression of the two functionally coupled enzymes via GSH did not appear to coordinate with development, tissue localization or under oxidative stress. Since many gene products show GSH-dependent preoxidase activity, other peroxidase(s) may be induced to compensate for the low GPX1 levels at stages with high GR expression.  相似文献   

20.
It is well established that the brain is particularly susceptible to oxidative damage due to its high consumption of oxygen and that astrocytes are involved in a variety of important activities for the nervous system, including a protective role against damage induced by reactive oxygen species (ROS). The use of antioxidant compounds, such as polyphenol resveratrol found in red wine, to improve endogenous antioxidant defenses has been proposed for neural protection. The aim of this study is to evaluate the putative protective effect of resveratrol against acute H2O2-induced oxidative stress in astrocyte cultures, evaluating ROS production, glutamate uptake activity, glutathione content and S100B secretion. Our results confirm the ability of resveratrol to counteract oxidative damage caused by H2O2, not only by its antioxidant properties, but also through the modulation of important glial functions, particularly improving glutamate uptake activity, increasing glutathione content and stimulating S100B secretion, which all contribute to the functional recovery after brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号