首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have proven the ability of montmorillonite to catalyse amino acid condensation under assumed prebiotic conditions, simulating wetting-drying cycles. In this work, the oligomerization of short peptides gly2, gly3, gly4 and ala2 on Ca-and Cu-montmorillonite in drying-wetting cycles at 80 °C was studied. The catalytic effect of montmorillonite was found to be much higher than in the case of glycine oligomerization. From gly2 after 3 weeks, 10% oligomers (up to gly6, with gly3 as main products) are formed. Gly3 and gly4 give higher oligomers even after 1 cycle. Ala2 produces both ala3 and ala4, whereas ala does not produce any oligomers under these conditions. Heteroologomerization was observed: ala-gly-gly is formed from ala and gly2. Much higher yields are obtained using Ca-montmorillonite, because copper (II) oxidizes organic molecules. The influence of the reaction mechanism on the preferential oligomerization of oligopeptides is discussed.  相似文献   

2.
Volder  Astrid  Bliss  Lawrence C.  Lambers  Hans 《Plant and Soil》2000,227(1-2):139-148
Polar-desert plants experience low average air temperatures during their short growing season (4–8 °C mean July temperature). In addition, low availability of inorganic nitrogen in the soil may also limit plant growth. Our goals were to elucidate which N sources can be acquired by polar-desert plants, and how growth and N-uptake are affected by low growth temperatures. We compared rates of N-uptake and increases in mass and leaf area of two polar-desert species (Cerastium alpinum L. and Saxifraga caespitosa L.) over a period of 3 weeks when grown at two temperatures (6 °C vs. 15 °C) and supplied with either glycine, NH4 + or NO3 . At 15 °C, plants at least doubled their leaf area, whereas there was no change in leaf area at 6 °C. Measured mean N-uptake rates varied between 0.5 nmol g−1 root DM s−1 on glycine at 15 °C and 7.5 nmol g−1 root DM s−1 on NH4 + at 15 °C. Uptake rates based upon increases in mass and tissue N concentrations showed that plants had a lower N-uptake rate at 6 °C, regardless of N source or species. We conclude that these polar-desert plants can use all three N sources to increase their leaf area and support flowering when grown at 15 °C. Based upon short-term (8 h) uptake experiments, we also conclude that the short-term capacity to take up inorganic or organic N is not reduced by low temperature (6 °C). However, net N-uptake integrated over a three-week period is severely reduced at 6 °C. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
In this study, the kinetic behaviors between n-butyl acetate and composite bead were investigated. Both microbial growth rate and biochemical reaction rate would be inhibited with increasing average inlet concentration. The order of the inhibitive effect, which resulted from increased average inlet concentration for four operation temperatures, was 30>35>40>25 °C. Both microbial growth rate and biochemical reaction rate would be enhanced and inhibited with increasing operation temperature in the operation temperature ranges of 25 to 30 and 30 to 40 °C, respectively. The enhancing and inhibitive effects resulting from increased operation temperature were the most pronounced at the average inlet concentration of 200 ppm. The values of maximum reaction rate V m and half-saturation constant K s ranged from 0.011 to 0.047 g C h−1 kg−1 packed material and from 19.30 to 62.40 ppm, respectively. The zero-order kinetic with the diffusion rate limitation could be regarded as the most adequate biochemical reaction kinetic model. The values of maximum elimination capacity ranged from 0.51 to 0.20 g C h−1 kg−1 packed material, and the optimal maximum elimination capacity of biofilter occurred at the operation temperature of 30 °C.  相似文献   

4.
Cold-season processes are known to contribute substantially to annual carbon (C) and nitrogen (N) budgets in continental high elevation and high-latitude soils, but their role in more temperate alpine ecosystems has seldom been characterized. We used a 4-month lab incubation to describe temperature (−2, 0, 5°C) and moisture [50, 90% water-holding capacity (WHC)] effects on soil C and N dynamics in two wet and one dry meadow soil from the Sierra Nevada, California. The soils varied in their capacity to process N at and below 0°C. Only the dry meadow soil mineralized N at −2°C, but the wet meadow soils switched from net N consumption at −2°C to net N mineralization at temperatures ≥0°C. When the latter soils were incubated at −2°C at either moisture level (50 or 90% WHC), net NO3 production decreased even as NH4 + continued to accumulate. The same pattern occurred in saturated (90% WHC) soils at warmer temperatures (≥0°C), suggesting that dissimilatory processes could control N cycling in these soils when they are frozen.  相似文献   

5.
Two cultivars (Katy and Erhuacao) of apricot (Prunus armeniaca L.) were evaluated under open-field and solar-heated greenhouse conditions in northwest China, to determine the effect of photosynthetic photon flux density (PPFD), leaf temperature, and CO2 concentration on the net photosynthetic rate (P N). In greenhouse, Katy registered 28.3 μmol m−2 s−1 for compensation irradiance and 823 μmol m−2 s−1 for saturation irradiance, which were 73 and 117 % of those required by Erhuacao, respectively. The optimum temperatures for cvs. Katy and Erhuacao were 25 and 35 °C in open-field and 22 and 30 °C in greenhouse, respectively. At optimal temperatures, P N of the field-grown Katy was 16.5 μmol m−2 s−1, 21 % less than for a greenhouse-grown apricot. Both cultivars responded positively to CO2 concentrations below the CO2 saturation concentration, whereas Katy exhibited greater P N (18 %) and higher carboxylation efficiency (91 %) than Erhuacao at optimal CO2 concentration. Both cultivars exhibited greater photosynthesis in solar-heated greenhouses than in open-field, but Katy performed better than Erhuacao under greenhouse conditions.  相似文献   

6.
Loiseau  P.  Soussana  J. F. 《Plant and Soil》1999,212(2):123-131
The effects of elevated [CO2] (700 μl l−1 [CO2]) and temperature increase (+3 °C) on carbon accumulation in a grassland soil were studied at two N-fertiliser supplies (160 and 530 kgN ha−1 year−1) in a long-term experiment (2.5 years) on well established ryegrass swards (Lolium perenne L.,) supplied with the same amounts of irrigation water. For all experimental treatments, the C:N ratio of the top soil organic matter fractions increased with their particle size. Elevated CO2 concentration increased the C:N ratios of the below-ground phytomass and of the macro-organic matter. A supplemental fertiliser N or a 3 °C increase in elevated [CO2] reduced it. At the last sampling date, elevated [CO2] did not affect the C:N ratio of the soil organic matter fractions, but increased significantly the accumulation of roots and of macro-organic matter above 200 μm (MOM). An increased N-fertiliser supply stimulated the accumulation of the non harvested plant phytomass and of the OM between 2 and 50 μm, without positive effect on the macro-organic matter >200 μm. Elevated [CO22] increased C accumulation in the OM fractions above 50 μm by +2.1 tC ha−1, on average, whereas increasing the fertiliser N supply led to an average supplemental accumulation of +0.8 tC ha−1. There was no significant effect of a 3 °C temperature increase under elevated [CO2] on C accumulation in the OM fractions above 50 μm. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
By constructing a genomic library, a new gene encoding β-glucosidase (Bgl1C) was cloned from Exiguobacterium oxidotolerans A011, which was isolated from deep sea mud. The putative β-glucosidase gene consisted of an open reading frame (ORF) of 1,347 nucleotides, and encoded a protein of 448 amino acids with a predicted molecular weight of 51.6 kDa. Bgl1C belonged to the glycoside hydrolase family 1, and the deduced amino acid sequence displayed the highest identity (68%) to the β-glucosidase from Bacillus coahuilensis m4-4. Optimal conditions for activity were pH 7 and a temperature of 35°C and Bgl1C was stable in buffers ranging from pH 6.6 to 9. The specific activity, K m, and V max for the substrate p-nitrophenyl-β-d-glucopyranoside were 41 U mg−1, 1.72 mg ml−1 and 0.45 μg ml−1 s−1, respectively. Na+, Ca2+, EDTA and β-mercaptoethanol had no effect on the activity, while Hg2+, Cu2+, Co2+ strongly inhibited it. It is noteworthy that Bgl1C is a cold active enzyme that retains about 61% of its maximum activity at 10°C. Structural model of Bgl1C revealed that some amino acids (glycine, alanine, serine, valine) concerned with plasticity and flexibility were located around the active sites, this may contributed to the cold adaption of Bgl1C. These favorable features make Bgl1C a potential candidate for various industrial applications.  相似文献   

8.
Lipase-catalyzed synthesis of isoamyl acetate in hexane at 10–250 MPa at 80°C and 1–100 MPa at 40°C resulted in activation volumes of −12.9 ± 1.7 and −21.6 ± 2.9 cm3 mol−1, respectively. Increasing pressure from 10 to 200 MPa resulted in approximately 10-fold increase in V max at both 40 and 80°C. Pressure increased the K m from 2.4 ± 0.004 to 38 ± 0.78 mM at 40°C. In contrast, at 80°C the pressure did not affect the K m.  相似文献   

9.
 The activity of the respiratory Electron Transfer System (ETS) was measured in total microplankton (<200-μm size fraction) and nanoplankton (<20-μm size fraction) from the Bransfield Strait, during the ECOANTAR 1993–1994 cruise of the Spanish B.I.O. Hespérides in January 1994. Activity variation in response to temperature was measured at three stations belonging to three different water masses that showed in situ temperatures ranging from −0.57 to 1.30°C. Subsamples from each station were assayed for ETS activity at 11 temperatures in the −3 to 20°C range. The results showed a bimodal activity-temperature variation in plankton from the lower in situ temperatures, with a peak in activity at 0°C, and a minimum at 3°C, with subsequent continuous increase up to absolute maxima at 15°C. The water mass with higher than 0°C temperature did not show the 0°C activity peak. The results suggest the existence, in water masses with in situ temperature near or below 0°C, of psychrophilic microbial populations with a narrow temperature range of respiratory enzyme activity, coexisting with more numerous and widespread psychrotrophs, or cold-tolerant populations, whose ETSs showed a continuous increase in activity in the −3 to 15°C temperature range. Arrhenius activation energies (Ea) of total microplankton ranged from 3 to 17 kcal mole-1, and the Q10 from 1.2 to 3.5. These facts point to the existence of differentiated biochemical adaptations and acclimations to low temperature in polar plankton, an issue that has been much discussed in the recent past. Received: 20 July 1995/Accepted: 28 October 1995  相似文献   

10.
Kinetic comparisons of mesophilic and thermophilic aerobic biomass   总被引:1,自引:0,他引:1  
Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate (acetate) in a mineral medium. The intrinsic maximum growth rate (μ max) at 55°C was 0.71±0.09 h−1, which is 1.5 times higher than the μ max at 30°C (0.48±0.11 h−1). The biomass decay rates increased from 0.004 h−1 at 30°C to 0.017 h−1 at 55°C. Monod constants were very low for both types of biomass: 9±2 mg chemical oxygen demand (COD) l−1at 30°C and 3±2 mg COD l−1at 55°C. Theoretical biomass yields were similar at 30 and 55°C: 0.5 g biomass COD (g acetate COD)−1. The observed biomass yields decreased under both temperature conditions as a function of the cell residence time. Under thermophilic conditions, this effect was more pronounced due to the higher decay rates, resulting in lower biomass production at 55°C compared to 30°C. Electronic Publication  相似文献   

11.
Uptake of glyeine,l-cysteine,l-leucine,l-methionine,l-aspartic acid andl-lysine was investigated in resting cells ofSaccharomyces cerevisiae treated with 0.3mm actidione for blocking protein synthesis. The amino acids were taken up against substantial concentration gradients (up to nearly 1,000∶1 for μm l-cysteine and glycine). They were present in the free form inside the cells. Their unidirectional transmembrane fluxes were under a negative feedback control by the intracellular concentration of the amino acid involved. The amino acids tested apparently employed more than one transport agéncies for their membrane passage, the half-saturation constants being 6.2–7.7×10−4 m for glycine, 2.5×10−4 m forl-cysteine, 6×10−5 and 4×10−4 m forl-lysine, 3×10−5 and 6×10−4 m forl-methionine, 7–18×10−5 and 1.6×10−3 m forl-aspartic acid and 6×10−5 and 2×10−3 m forl-leucine. The specificities of the transport systems are overlapping but there emerges a wide-affinity transport system for glycine, alanine, leucine, methionine, serine, cysteine, phenylalanine, aspartic acid, asparagine, glutamic acid and tryptophan (and possibly for other amino acids), and more specific systems for each of the following: glycine, lysine, methionine, histidine, arginine, and aspartic and glutamic acids. Proline had the peculiar effect of stimulating the transport of all the amino acids tested. The amino acids apparently interacted in the uptake not only by competition for the binding site but also by allotopic inhibition (e.g.l-cysteine) and possibly stimulation (l-proline). The initial rate of uptake of amino acids and their steady-state level of distribution were characterized by identical activation energies: 7.5 kcal/mole forl-lysine, 6.9 kcal/mole forl-aspartic acid, and 13.2 kcal/mole for glycine.  相似文献   

12.
Corneal cryopreservation requires that endothelial cells remain viable and intercellular structure be preserved. High viability levels for cryopreserved endothelial cells have been achieved, but preserving intercellular structure, especially endothelial attachment to Descemet's membrane, has proved difficult. Cell detachment apparently is not caused by ice, suggesting osmotic or chemical mechanisms. Knowledge of the permeation kinetics of cryoprotectants (CPAs) into endothelial cells and stroma is essential for controlling osmotic and chemical activity and achieving adequate tissue permeation prior to cooling. Proton nuclear magnetic resonance (NMR) spectroscopy was used to assess the permeation of dimethyl sulfoxide (DMSO) into isolated rabbit corneas. Corneas with intact epithelia were exposed to isotonic medium or 2.0 mol/L DMSO for 60 min and subsequently transferred to 2.0 or 4.0 mol/L DMSO, respectively, at 22, 0, or −10°C. DMSO concentration in the cornea was measured vs time. The Kedem-Katchalsky model was fitted to the data. Hydraulic permeability (m3/N·s) is 7.1×10−13+216%-11% at 22°C, 8.2×10−13+235%−21% at 0°C, and 1.7×10−14+19% −16% at −10°C. The reflection coefficient is 1.0+2%−1% at 22°C and 0°C, and 0.9±5% at −10°C. Solute mobility (cm/s) is 5.9×10−6+6%–11% at 22°C, 3.1×10−6+12%−11% at 0°C, and 5.0×10−8 cm/s+59%−40% at −10°C.  相似文献   

13.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

14.
CO2 applied for Free-Air CO2 Enrichment (FACE) experiments is strongly depleted in 13C and thus provides an opportunity to study C turnover in soil organic matter (SOM) based on its δ 13C value. Simultaneous use of 15N labeled fertilizers allows N turnover to be studied. Various SOM fractionation approaches (fractionation by density, particle size, chemical extractability etc.) have been applied to estimate C and N turnover rates in SOM pools. The thermal stability of SOM coupled with C and N isotopic analyses has never been studied in experiments with FACE. We tested the hypothesis that the mean residence time (MRT) of SOM pools is inversely proportional to its thermal stability. Soil samples from FACE plots under ambient (380 ppm) and elevated CO2 (540 ppm; for 3 years) treatments were analyzed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). Based on differential weight losses (TG) and energy release or consumption (DSC), five SOM pools were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ 13C and δ 15N by IRMS. Energy consumption and mass losses in the temperature range 20–200°C were mainly connected with water volatilization. The maximum weight losses occurred from 200–310°C. This pool contained the largest amount of carbon: 61% of the total soil organic carbon in soil under ambient treatment and 63% in soil under elevated CO2, respectively. δ 13C values of SOM pools under elevated CO2 treatment showed an increase from −34.3‰ of the pool decomposed between 20–200°C to −18.1‰ above 480°C. The incorporation of new C and N into SOM pools was not inversely proportional to its thermal stability. SOM pools that decomposed between 20–200 and 200–310°C contained 2 and 3% of the new C, with a MRT of 149 and 92 years, respectively. The pool decomposed between 310–400°C contained the largest proportion of new C (22%), with a MRT of 12 years. The amount of fertilizer-derived N after 2 years of application in ambient and elevated CO2 treatments was not significantly different in SOM pools decomposed up to 480°C having MRT of about 60 years. In contrast, the pool decomposed above 480°C contained only 0.5% of new N, with a MRT of more than 400 years in soils under both treatments. Thus, the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. Responsible Editor: Bernard Nicolardot.  相似文献   

15.
Biodegradation of propanol and isopropanol by a mixed microbial consortium   总被引:1,自引:0,他引:1  
The aerobic biodegradation of high concentrations of 1-propanol and 2-propanol (IPA) by a mixed microbial consortium was investigated. Solvent concentrations were one order of magnitude greater than any previously reported in the literature. The consortium utilized these solvents as their sole carbon source to a maximum cell density of 2.4 × 109 cells ml−1. Enrichment experiments with propanol or IPA as carbon sources were carried out in batch culture and maximum specific growth rates (μmax) calculated. At 20 °C, μ max values were calculated to be 0.0305 h−1 and 0.1093 h−1 on 1% (v/v) IPA and 1-propanol, respectively. Growth on propanol and IPA was carried out between temperatures of 10 °C and 45 °C. Temperature shock responses by the microbial consortium at temperatures above 45 °C were demonstrated by considerable cell flocculation. An increase in propanol substrate concentration from 1% (v/v) to 2% (v/v) decreased the μ max from 0.1093 h−1 to 0.0715 h−1. Maximum achievable biodegradation rates of propanol and IPA were 6.11 × 10−3% (v/v) h−1 and 2.72 × 10−3% (v/v) h−1, respectively. Generation of acetone during IPA biodegradation commenced at 264 h and reached a maximum concentration of 0.4% (v/v). The results demonstrate the potential of mixed microbial consortia in the bioremediation of solvent-containing waste streams. Received: 14 December 1999 / Received revision: 3 April 2000 / Accepted: 7 April 2000  相似文献   

16.
M. Tretiach  A. Geletti 《Oecologia》1997,111(4):515-522
CO2 exchange of the endolithic lichen Verrucaria baldensis was measured in the laboratory under different conditions of water content, temperature, light, and CO2 concentration. The species had low CO2 exchange rates (maximum net photosynthesis: c. 0.45 μmol CO2 m−2 s−1; maximum dark respiration: c. 0.3 μmol CO2 m−2 s−1) and a very low light compensation point (7 μmol photons m−2 s−1 at 8°C). The net photosynthesis/respiration quotient reached a maximum at 9–15°C. Photosynthetic activity was affected only after very severe desiccation, when high resaturation respiratory rates were measured. Microclimatic data were recorded under different weather conditions in an abyss of the Trieste Karst (northeast Italy), where the species was particularly abundant. Low photosynthetically active radiation (normally below 40 μmol photons m−2 s−1), very high humidities (over 80%), and low, constant temperatures were measured. Thallus water contents sufficient for CO2 assimilation were often measured in the absence of condensation phenomena. Received: 22 September 1996 / Accepted: 26 April 1997  相似文献   

17.
The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combination for growth of H. pluvialis, but there has been a great deal of disagreement between laboratories. “Ideal” levels of temperature and irradiance have been reported to range from 14 to 28°C and 30 to 200 μmol photons m−2 s−1. The objective of the present study was to simultaneously explore temperature and irradiance effects for a single strain of H. pluvialis (UTEX 2505) across an experimental region that encompassed the reported “optimal” combinations of these factors for multiple strains. To this end, a two-dimensional experimental design based on response surface methodology (RSM) was created. Maximum growth rates for UTEX 2505 were achieved at 27°C and 260 μmol photons m−2 s−1, while maximum quantum yield for stable charge separation at PSII (Fv/Fm) was achieved at 27°C and 80 μmol photons m−2 s−1. Maximum pigment concentrations correlated closely with maximum Fv/Fm. Numeric optimization of growth rate and Fv/Fm produced an optimal combination of 27°C and 250 μmol photons m−2 s−1. Polynomial models of the various response surfaces were validated with multiple points and were found to be very useful for predicting several H. pluvialis UTEX 2505 responses across the entire two-dimensional experimental design space.  相似文献   

18.
The saccharification process of swine manure by conventional and microwave-assisted acid pretreated were investigated using cellulose enzymes, respectively. The optima for microwave-assisted acid pretreated swine manure is achieved when swine manure of 50 g l−1 of substrate concentration and water amount 40 ml was pretreated by 4% H2SO4 concentration with 445 W microwave powers for 30 min at pretreatment period, and temperature 50 °C, enzyme loading 2 mg g−1 substrate, substrate concentration 5 g l−1 and initial medium pH 4.8 at enzymes hydrolysis period by microwave-assisted acid pretreated, respectively. The optimal conditions by conventional acid pretreated is obtained when 50 g l−1 swine manure was submerged in 40 ml, 4% H2SO4 maintained at 130 °C for 3 h at pretreatment period, and temperature 45 °C, enzyme loading 2 mg g−1 substrate, substrate concentration 15 g l−1 and initial medium pH 5.2 at enzymes hydrolysis period, respectively. Under the optimum conditions microwave-assisted acid pretreatment could achieve higher yield of reducing sugar, short reaction time, and lower energy consumption than from the conventional acid pretreatment, which indicates that microwave-assisted acid pretreatment is more suitable for swine manure pretreatment than by acid alone.  相似文献   

19.
Wei P  Li Z  Lin Y  He P  Jiang N 《Biotechnology letters》2007,29(10):1501-1508
An effective, simple, and convenient method to improve yeast’s multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H2O2, and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 × 107 c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l−1) to SC521 at 30°C with 200 g glucose l−1, and was better than the parent strain at 37°C (72.5 g ethanol l−1), with 300 (111 g ethanol l−1) or with 400 (85 g ethanol l−1) g glucose l−1.  相似文献   

20.
This paper aims to determine the changes in reactive oxygen species (ROS) and the responses of the lily (Lilium longiflorum L.) antioxidant system to short-term high temperatures. Plants were exposed to three levels of heat stress (37°C, 42°C, 47°C) for 10 h when hydrogen peroxide (H2O2) and superoxide (O2) production rate along with membrane injury indexes, and changes in antioxidants were measured. Compared with the control (20°C), electrolyte leakage and MDA concentration varied slightly after 10 h at 37°C and 42°C, while increased significantly at 47°C. During 10 h at 37°C and 42°C, antioxidant enzyme activities, such as SOD, POD, CAT, APX and GR, were stimulated and antioxidants (AsA and GSH concentrations) maintained high levels, which resulted in low levels of O2 and H2O2 concentration. However, after 10 h at 47°C, SOD, APX, GR activities and GSH concentration were similar to the controls, while POD, CAT activities and AsA concentration decreased significantly as compared with the control, concomitant with significant increase in O2 and H2O2 concentrations. In addition, such heat-induced effects on antioxidant enzymes were also confirmed by SOD and POD isoform, as Cu/ZnSOD maintained high stability under heat stress and the intensity of POD isoforms reduced with the duration of heat stress, especially at 47°C. It is concluded that in lily plants, the oxidative damage induced by heat stress was related to the changes in antioxidant enzyme activities and antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号