首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anti-tumour protein alpha-sarcin causes fusion of bilayers of phospholipid vesicles at neutral pH. This is demonstrated by measuring the decrease in the efficiency of the fluorescence energy transfer between N-(7-nitro-2-1,3-benzoxadiazol-4-yl)-dimyristoylphosphatidylethano lamine (NDB-PE) (donor) and N-(lissamine rhodamine B sulphonyl)-diacylphosphatidylethanolamine (Rh-PE) (acceptor) incorporated in dimyristoylphosphatidylcholine (DMPG) vesicles. The effect of alpha-sarcin is a maximum at 0.15 M ionic strength and is abolished at basic pH. alpha-Sarcin promotes fusion between 1,6-diphenylhexa-1,3,5-triene (DPH)-labelled DMPG and dipalmitoyl-PG (DPPG) vesicles, resulting in a single thermotropic transition for the population of fused phospholipid vesicles. Bilayers composed of DMPC and DMPG, at different molar ratios in the range 1:1 to 1:10 PC/PG, are also fused by alpha-sarcin. Freeze-fracture electron micrographs corroborate the occurrence of fusion induced by the protein. alpha-Sarcin also modifies the permeability of the bilayers, causing the leakage of calcein in dye-trapped PG vesicles. All of the observed effects reach saturation at a 50:1 phospholipid/protein molar ratio, which is coincident with the binding stoichiometry previously described.  相似文献   

2.
alpha-Sarcin is a single polypeptide chain protein which exhibits antitumour activity by degrading the larger ribosomal RNA of tumour cells. We describe the interaction of a alpha-sarcin with lipid model systems. The protein specifically interacts with negatively-charged phospholipid vesicles, resulting in protein-lipid complexes which can be isolated by ultracentrifugation in a sucrose gradient. alpha-Sarcin causes aggregation of such vesicles. The extent of this interaction progressively decreases when the molar ratio of phosphatidylcholine increases in acidic vesicles. The kinetics of the vesicle aggregation induced by the protein have been measured. This process is dependent on the ratio of alpha-sarcin present in the protein-lipid system. A saturation plot is observed from phospholipid vesicles-protein titrations. The saturating protein/lipid molar ratio is 1:50. The effect produced by the antitumour protein on the lipid vesicles is dependent on neither the length nor the degree of unsaturation of the phospholipid acyl chain. However, the aggregation is dependent on temperature, being many times higher above the phase transition temperature of the corresponding phospholipid than below it. The effects of pH and ionic strength have also been considered. An increase in the ionic strength does not abolish the protein-lipid interaction. The effect of pH may be related to conformational changes of the protein. Binding experiments reveal a strong interaction between alpha-sarcin and acidic vesicles, with Kd = 0.06 microM. The peptide bonds of the protein are protected against trypsin hydrolysis upon binding to acidic vesicles. The interaction of the protein with phosphatidylglycerol vesicles does not modify the phase transition temperature of the lipid, although it decreases the amplitude of the change of fluorescence anisotropy associated to the co-operative melting of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labelled vesicles. The results are interpreted in terms of the existence of both electrostatic and hydrophobic components for the interaction between phospholipid vesicles and the antitumour protein.  相似文献   

3.
We have used assays of lipid probe mixing, contents mixing and contents leakage to monitor the divalent cation-mediated interactions between lipid vesicles containing phosphatidylserine (PS) as a minority component together with mixtures of phosphatidylethanolamine (PE), phosphatidylcholine (PC) or sphingomyelin, and cholesterol in varying proportions. The initial rates of calcium- and magnesium-induced lipid probe quenching between vesicles, which reflect primarily the rates of vesicle aggregation, are strongly reduced as progressively higher proportions of PC or sphingomyelin are incorporated into PE/PS vesicles. The initial rates of divalent cation-induced contents mixing and contents leakage for PE/PS vesicles are also strongly reduced when choline phospholipids are incorporated into the vesicles in even low molar proportions. Sphingomyelin has a more potent inhibitory effect on these processes than does PC at an equal level in the vesicle membranes. The inclusion of cholesterol in these vesicles, at levels up to 1:2 moles sterol/mole phospholipid, has little effect on the rates of calcium- or magnesium-induced vesicle aggregation. However, cholesterol significantly enhances the initial rates of vesicle contents mixing and contents leakage in the presence of divalent cations when the vesicles contain choline as well as amino phospholipids. This effect is substantial only when the level of cholesterol exceeds the level of choline phospholipids in the vesicles. These results may have significance for the fusion of certain cellular membranes in mammalian cells, whose cytoplasmic faces have lipid compositions very similar to those of the vesicles examined in this study.  相似文献   

4.
Cation-induced aggregation of acidic phospholipid vesicles consisting of dimyristoylphosphatidylglycerol (DMPG), dipalmitoylphosphatidylserine (DPPS), phosphatidylserine from bovine brain (brPS), and phosphatidylglycerol from egg yolk (eggPG) was studied. Significant differences were evident in the NaCl-induced aggregation of fully saturated and unsaturated acidic phospholipid vesicles. The threshold NaCl concentration of vesicle aggregation ([NaCl]Thr) for DPPS vesicles was 320 mM compared to 610 mM observed for brPS vesicles. For DMPG vesicles the [NaCl]Thr was 430 mM and no aggregation of eggPG vesicles could be observed upon addition of NaCl. The threshold CaCl2 concentrations of aggregation of DMPG and eggPG vesicles were 2.3 and 4.9 mM, respectively. The corresponding threshold CaCl2 concentrations for DPPS and brPS vesicles were 0.85 mM and 1.3 mM, respectively. The inclusion of cholesterol into vesicles attenuated NaCl- and CaCl2-induced aggregation of DMPG and DPPS vesicles. However, enhancement of aggregation by inclusion of cholesterol was observed in the case of NaCl-induced aggregation of brPS vesicles. It is concluded that cation mediated membrane-membrane interactions depend, in addition to polar headgroup structure, on the fatty acid composition of the phospholipids also.  相似文献   

5.
Circular dichroism measurements were carried out on poly(L-lysine) in the presence of vesicles of the negatively charged phospholipids, phosphatidylserine (PS; from bovine brain), phosphatidic acid (PA; prepared from egg yolk lecithin) and dimyristoylphosphatidylglycerol (DMPG). PS vesicles induced a conformational change in poly(L-lysine) from random coil to alpha-helix structure in 5 mM Tes (pH 7.0), whereas PA vesicles gave rise to beta-structure in the same buffer. The fraction of alpha-helix, F alpha (or beta-structure, F beta), increased with increasing PS (or PA) concentration, reaching a saturation value of about 0.7 (or about 1). Mixed vesicles comprising PS and dilauroylphosphatidylcholine (DLPC) also induced alpha-helix conformation, however, the saturation value of F alpha diminished with decreasing PS content in mixed vesicles. On the other hand, the spectral patterns for poly(L-lysine) in DMPG vesicle suspensions exhibited the coexistence of alpha-helix and beta-structure. Both F alpha and F beta increased with DMPG concentration and reached saturation values of about 0.5. Mixed vesicles composed of DMPG and dimyristoylphosphatidylcholine (DMPC) led to a reduction in F beta, while F alpha remained almost constant. The diversity in ordered structure induced by different phospholipid vesicles suggests the participation of lipid head groups in determining the secondary structure of poly(L-lysine) adsorbed on the vesicular surface.  相似文献   

6.
Monovalent cation-induced fusion of acidic phospholipid vesicles   总被引:1,自引:0,他引:1  
Fusion of small unilamellar vesicles (SUV) consisting of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and phosphatidylglycerol (PG) from egg yolk, dipalmitoylphosphatidylserine (DPPS) and phosphatidylserine (PS) from bovine brain was studied as a function of monovalent cation concentration. Fusion was detected by measuring the changes in the excimer to monomer fluorescence intensity ratio (IE/M) of pyrene-labeled phospholipid analogues upon fusion of the pyrene-labeled and unlabeled vesicles. No fusion was observed from vesicles consisting of DMPC, PS from bovine brain or PG from egg yolk upon addition of NaCl (up to 1 M). However, considerable fusion was evident for vesicles consisting of DMPG or DPPS upon addition of monovalent cations (300 mM to 1 M). Fusion kinetics were fast reaching a plateau after 5 min of addition of cations. The order of efficiency of different monovalent cations to induce the fusion of DMPG vesicles as judged by the changes of the IE/M ratio was Li+ greater than Na+ greater than K+ greater than Cs+. DSC-scan of sonicated DMPG vesicles showed, in the absence of salt, a phase transition at 19.2 degrees C with enthalpy of 1.1 kcal.mol-1. After incubation in the presence of 600 mM NaCl the DSC scan showed a narrow phase transition at 24.1 degrees C with enthalpy of 6.9 kcal.mol-1 and a pronounced pretransition, both supporting that the fusion of the vesicles had occurred in the presence of NaCl. The results indicate that sonicated vesicles consisting of acidic phospholipids with fully saturated fatty acids fuse in the presence of monovalent cations, whereas those containing unsaturated fatty acids do not.  相似文献   

7.
alpha-Sarcin is a cytotoxic protein that strongly interacts with acid phospholipid vesicles. This interaction exhibits a hydrophobic component although alpha-sarcin is a highly polar protein. A peptide comprising the amino acid sequence corresponding to the 116-139th segment of the alpha-sarcin cytotoxin has been synthesized by a standard fluoren-9-yl-methoxycarbonyl-based solid phase method. Its primary structure is: (116)-NPGPARVIYTYPNKVFCGIIAHTK-(139). Two beta-strands have been predicted in this region of alpha-sarcin, where the less polar stretches of the protein are found. The synthetic peptide interacts with negatively charged large unilamellar vesicles of either natural or synthetic phospholipids. An apparent fragmentation of the vesicles is produced by the peptide based on electron microscopy studies. The peptide promotes leakage of the intravesicular aqueous contents and lipid mixing of bilayers. The packing of the phospholipid molecules is greatly perturbed by the peptide, as deduced from the drastic changes induced by the peptide in cooperative properties associated with the phase transition of the bilayers. At saturating peptide/phospholipid ratios, the phase transition of dimyristoylphosphatidylglycerol vesicles is abolished. All of these effects are saturated at about 0.3 peptide/lipid molar ratio. The peptide adopts a mostly random structure in aqueous solution. A conformation composed of a high proportion of antiparallel beta-sheet is induced as a consequence of the interaction with the phospholipid vesicles in opposition to trifluoroethanol that promotes alpha-helical peptide structures, as deduced from circular dichroism measurements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosphatidyl-serine (DMPS) bilayers as well as a protonated di-myristoyl-phosphatidyl-serine (DMPSH) bilayer. We were particularly interested in calcium ions due to their important role in biological systems. Simulations performed in the presence of calcium ions (DMPG, DMPS) or sodium ions (DMPS) were run for 45-60 ns. Simulation results for DMPG are compared with fluorescence measurements. The average areas per molecule were 47.4+/-0.5 A2 (DMPG with calcium), 47.3+/-0.5 A2 (DMPS with calcium), 51.3+/-1.0 A2 (DMPS with sodium) and 45.3+/-0.5 A2 (DMPSH). The structure of the negatively charged lipids is significantly affected by the counterions, where calcium ions have a more pronounced effect than sodium ions. Calcium ions were found to be tightly bound to the anionic groups of the lipid molecules and as such appear to constitute an integral part of the membrane interface on nanoseconds time scales. In contrast to sodium ions, calcium ions are localised in a narrow (approximately 10 A) band around the phosphate group. The interaction of calcium with the lipid molecules enhances the molecular packing of the PG and PS lipids. This observation is in good agreement with emission spectra of the membrane partitioning probe Laurdan in DMPG multilamellar vesicles that indicate an increase in the ordering of the DMPG bilayer due to the presence of calcium. Our results indicate that calcium ions, which often function as a second messengers in living cells have a pronounced effect on membrane structures, which may have implications during signal transduction events.  相似文献   

9.
Using high-gradient magnetophoresis, the non-protein-mediated transfer and exchange of phosphatidylglycerol (PG) molecules between sonicated phospholipid dispersions and magnetoliposomes is studied. The latter structures consist of nanometer-sized magnetite (Fe3O4) cores which are enwrapped by a phospholipid bilayer. Their dimensions are similar to those of small unilamellar vesicles (De Cuyper and Joniau (1988) Eur. J. Biophys. 15, 311-319). Using these particles, spontaneous lipid movements were studied in three different cases. In a first setup, symmetric exchange between dimyristoylphosphatidylglycerol (DMPG) magnetoliposomes, labelled with [3H]DMPG, and DMPG vesicles was followed. Within the time scale of the experiment (1 day) both the lipid molecules residing in the inner and outer leaflet of the magnetoliposomes participate in the exchange process, although 'flip-flop' movements have a retarding effect. In the second approach a unidirectional flux of DMPG from DMPG magnetoliposomes to distearoylphosphatidylglycerol (DSPG) acceptors is noted. In this case, the outer phospholipid leaflet of the magnetoliposomes (in contrast to the inner one) can be largely stripped off; the extent of depletion is determined by the relative amount of the DSPG receiving structures. Furthermore, it is found that with a 15-fold molar excess of receptors, the whole depletion course can be described by a single first-order rate expression. The reluctancy of the inner shell phospholipids to migrate is further illustrated by the virtual lack of transfer, observed with monolayer-coated Fe3O4 colloids. In the third case, asymmetric bidirectional PG transfer is followed between equimolar amounts of DMPG magnetoliposomes and dipentadecanoylphosphatidylglycerol vesicles. In the initial stage of the incubation period, the mmol PG/g Fe3O4 ratio decreases, but progressively restores later on. By quantitatively measuring the transfer rate of each of the individual components, this complex behavior could be unravelled.  相似文献   

10.
Human apohemoglobin in acidic media was found to induce fusion of phosphatidylcholine/phosphatidylserine (1:1) vesicles at low protein concentration but to fragment the same vesicles to form micellar complex at high protein concentration. The fusion was demonstrated by size increase, vesicle content mixing, lipid mixing, and electron microscopy. The micellization of phospholipid vesicles was observed by light scattering, gel filtration, and electron microscopy. The hydrophobic labeling of the apohemoglobin/vesicle complex followed by CNBr cleavage of apohemoglobin showed that an N-terminal segment of the beta subunit with a molecular weight of approximately 6,000 seems to be mainly involved in the fusion process, but the whole sequences of both alpha and beta chains participate in the micellization process.  相似文献   

11.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

12.
A new version of the ESR spin probe partitioning method is developed and applied to the study of hydration properties of dimyristoyl-phosphatidylglycerol (DMPG) and dimyristoyl-phosphatidylcholine (DMPC) vesicles as functions of salt concentration and temperature above the lipid phase transition. The small spin probe di-tert-butyl nitroxide (DTBN) is used in order to achieve motionally narrowed Electron Spin Resonance (ESR) spectra which may be analyzed with high precision. The new method relies on the use of the second harmonic display of the ESR spectrum followed by spectral line fitting. Spectral fitting yields precise ESR parameters giving detailed information on the surroundings of the spin probe in both phospholipid and aqueous phases. The nitrogen hyperfine coupling constant of DTBN arising from those probes occupying the vesicles is used to study the hydration of the vesicle surface. The hydration properties of the negatively charged vesicle surface of DMPG vesicles are affected by the addition of salt at all temperatures. In contrast, the hydration of DMPC vesicles does not change with salt concentration at the low temperatures. However, at higher temperatures the hydration properties of DMPC vesicle are affected by salt which is interpreted to be due to the faster motion of the phospholipid molecules. The partitioning of the spin probe increases with salt concentration for both DMPG and DMPC vesicles, while water penetration decreases simultaneously. The spin probe in the phospholipid bilayer exhibits anisotropic motion and the extent of the anisotropy is increased at the higher salt concentrations.  相似文献   

13.
The interactions of unilamellar vesicles containing phosphatidylcholine (PC) and phosphatidic acid (PA) in the presence of calcium and magnesium were examined by fluorometric assays of vesicle lipid mixing, contents mixing, and contents leakage and by spray-freezing freeze-fracture electron microscopy. These results were correlated with calorimetric and fluorometric measurements of divalent cation induced lateral segregation of lipids in these vesicles under comparable conditions. PA-PC vesicles in the presence of calcium show a rapid but limited intermixing of vesicle lipids and contents, the extent of which increases as the vesicle size decreases or the PA content increases. Calcium produces massive aggregation and efficient mixing of the contents of vesicles containing high proportions of dioleoyl-PA or egg PA, but vesicle coalescence in the latter case is followed rapidly by vesicle collapse and massive leakage of contents. The effects of magnesium are similar for vesicles of very high PA content. However, in the presence of magnesium, vesicles containing lower amounts of PA exhibit "hemifusion", a mode of interaction in which vesicles aggregate and mix approximately 50% of their lipids, apparently representing the lipids of the outer monolayer of each vesicle, without significant mixing of vesicle contents or collapse of the vesicles. Fluorometric measurements of lipid lateral segregation demonstrate that lateral redistribution of lipids in PA-PC vesicles begins at submillimolar concentrations of divalent cations and shows no abrupt change at the "threshold" divalent cation concentration, above which coalescence of vesicles is observed. By correlating calorimetric and fluorometric measurements of lipid lateral segregation and mixing of vesicle components, we can demonstrate that lipid segregation is at least strongly correlated with calcium-promoted coalescence of PA-PC vesicles and is essential to the magnesium-promoted interactions of vesicles of low PA contents.  相似文献   

14.
We have investigated the temperature dependence of the fusion of phospholipid vesicles composed of pure bovine brain phosphatidylserine (PS) induced by Ca2+ or Mg2+. Aggregation of the vesicles was monitored by 90 degrees light-scattering measurements, fusion by the terbium/dipicolinic acid assay for mixing of internal aqueous volumes, and release of vesicle contents by carboxyfluorescein fluorescence. Membrane fluidity was determined by diphenylhexatriene fluorescence polarization measurements. Small unilamellar vesicles (SUV, diameter 250 A) or large unilamellar vesicles (LUV, diameter 1000 A) were used, and the measurements were done in 0.1 M NaCl at pH 7.4. The following results were obtained: (1) At temperatures (0-5 degrees C) below the phase transition temperature (Tc) of the lipid, LUV (PS) show very little fusion in the presence of Ca2+, although vesicle aggregation is rapid and extensive. With increasing temperature, the initial rate of fusion increases dramatically. Leakage of contents at the higher temperatures remains limited initially, but subsequently complete release occurs as a result of collapse of the internal aqueous space of the fusion products. (2) SUV (PS) are still in the fluid state down to 0 degree C, due to the effect of bilayer curvature, and fuse rapidly in the entire temperature range from 0 to 35 degrees C in the presence of Ca2+. The initial rate of leakage is low relative to the rate of fusion. At higher temperatures (15 degrees C and above), subsequent collapse of the vesicles' internal space causes complete release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.  相似文献   

16.
We show that cryptdin-4 (Crp4), an antimicrobial peptide found in mice, induces the aggregation and hemi-fusion of charged phospholipid vesicles constructed of the anionic lipid POPG and the zwitterionic lipid POPC. Hemi-fusion is confirmed with positive total lipid-mixing assay results, negative inner monolayer lipid-mixing assay results, and negative results from contents-mixing assays. Aggregation, as quantified by absorbance and dynamic light scattering, is self-limiting, creating finite-sized vesicle assemblies. The rate limiting step in the formation process is the mixing of juxtaposed membrane leaflets, which is regulated by bound peptide concentration as well as vesicle radius (with larger vesicles less prone to hemi-fusion). Bound peptide concentration is readily controlled by total peptide concentration and the fraction of anionic lipid in the vesicles. As little as 1% PEGylated lipid significantly reduces aggregate size by providing a steric barrier for membrane apposition. Finally, as stable hemi-fusion is a rare occurrence, we compare properties of Crp4 to those of many peptides known to induce complete fusion and lend insight into conditions necessary for this unusual type of membrane merger.  相似文献   

17.
We show that cryptdin-4 (Crp4), an antimicrobial peptide found in mice, induces the aggregation and hemi-fusion of charged phospholipid vesicles constructed of the anionic lipid POPG and the zwitterionic lipid POPC. Hemi-fusion is confirmed with positive total lipid-mixing assay results, negative inner monolayer lipid-mixing assay results, and negative results from contents-mixing assays. Aggregation, as quantified by absorbance and dynamic light scattering, is self-limiting, creating finite-sized vesicle assemblies. The rate limiting step in the formation process is the mixing of juxtaposed membrane leaflets, which is regulated by bound peptide concentration as well as vesicle radius (with larger vesicles less prone to hemi-fusion). Bound peptide concentration is readily controlled by total peptide concentration and the fraction of anionic lipid in the vesicles. As little as 1% PEGylated lipid significantly reduces aggregate size by providing a steric barrier for membrane apposition. Finally, as stable hemi-fusion is a rare occurrence, we compare properties of Crp4 to those of many peptides known to induce complete fusion and lend insight into conditions necessary for this unusual type of membrane merger.  相似文献   

18.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

19.
B Kachar  N Fuller    R P Rand 《Biophysical journal》1986,50(5):779-788
Structural changes in phospholipid vesicles made of dioleylphosphatidylethanolamine (DOPE)/bovine phosphatidylserine (PS) (1/1, 3/1, 10/1) or of egg phosphatidylcholine (PC)/PS (3/1) and exposed to calcium chloride for various times have been observed by means of video-enhanced light microscopy and freeze-fracture electron microscopy. Calcium induces the formation of large, smooth double-bilayer diaphragms as the spherical vesicles adhere to and deform each other. No subsequent changes are seen with PC/PS vesicles. DOPE/PS vesicles respond to the resultant stress, with about equal probability, by either fusing, through diaphragm rupture, or deflating, by way of volume loss through intact bilayers, even when they contain up to 400 mM sucrose. The diaphragm areas only rarely show the structural destabilization necessary for fusion. The final state is lipid segregated into DOPE hexagonal and Ca-PS lamellar bulk phases with the exclusion of most of the vesicle contents. Results with these and pure PS vesicles studied earlier indicate that the early response of vesicles to calcium chloride is determined by the competing rates at which mechanical stress (bilayer tension and intravesicular pressure) builds up as the vesicles adhere and flatten against each other, and is relieved by vesicle fusion or by volume loss. We attribute the qualitatively different responses of these three lipid systems to their measured differences in adhesion energies and consequent rate of build-up of mechanical stress. Yield to that stress for any one of these lipid systems is not a unique sequence of morphological changes, and so it remains obscure how such a stochastic process could be used in the controlled process of cellular fusion.  相似文献   

20.
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 °C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号