共查询到20条相似文献,搜索用时 0 毫秒
1.
An outstanding challenge in olfactory neurobiology is to explain how glomerular networks encode information about stimulus mixtures, which are typical of natural olfactory stimuli. In the moth Manduca sexta, a species-specific blend of two sex-pheromone components is required for reproductive signaling. Each component stimulates a different population of olfactory receptor cells that in turn target two identified glomeruli in the macroglomerular complex of the males antennal lobe. Using intracellular recording and staining, we examined how responses of projection neurons innervating these glomeruli are modulated by changes in the level and ratio of the two essential components in stimulus blends. Compared to projection neurons specific for one component, projection neurons that integrated information about the blend (received excitatory input from one component and inhibitory input from the other) showed enhanced ability to track a train of stimulus pulses. The precision of stimulus-pulse tracking was furthermore optimized at a synthetic blend ratio that mimics the physiological response to an extract of the females pheromone gland. Optimal responsiveness of a projection neuron to repetitive stimulus pulses therefore appears to depend not only on stimulus intensity but also on the relative strength of the two opposing synaptic inputs that are integrated by macroglomerular complex projection neurons. 相似文献
2.
Computational models are increasingly essential to systems neuroscience. Models serve as proofs of concept, tests of sufficiency, and as quantitative embodiments of working hypotheses and are important tools for understanding and interpreting complex data sets. In the olfactory system, models have played a particularly prominent role in framing contemporary theories and presenting novel hypotheses, a role that will only grow as the complexity and intricacy of experimental data continue to increase. This review will attempt to provide a comprehensive, functional overview of computational ideas in olfaction and outline a computational framework for olfactory processing based on the insights provided by these diverse models and their supporting data. 相似文献
3.
4.
Juan Riesgo-Escovar Craig Woodard Peter Gaines John Carlson 《Developmental neurobiology》1992,23(8):947-964
Drosophila uses different olfactory organs at different developmental stages. The larval and adult olfactory organs are morphologically dissimilar and have different developmental origins: the antenno-maxillary complex (AMC), which houses the larval olfactory organ, is histolyzed during metamorphosis; the third antennal segment—the principal adult olfactory organ—derives from an imaginal disc. A screen for genes expressed in both larval and adult olfactory organs, but in relatively few other tissues, has been carried out. Seven enhancer trap lines showing reporter gene expression in both the larval AMC and in certain subsets of the adult antenna are described. The antennal staining pattern of one line shows a striking change over the first few days of adult life, with a time course comparable to that of the development of sexual maturity. A pronounced sexual dimorphism in antennal staining pattern is seen in another line. Some staining patterns resemble the patterns of certain classes of antennal sensilla; others show expression restricted to only a small number of cells. Some lines also show expression associated with other chemosensory organs at either the larval or adult stage, including the maxillary palps, labellum, and anterior wing margin. One line, which also shows staining in the male reproductive tract, is male sterile. The significance of these results is considered in terms of (1) the molecular organization of the olfactory system; (2) the recruitment of olfactory genes for use in two developmental contexts; (3) the sharing of genes among different sensory modalities; (4) the role of olfaction in sexual behavior; and (5) posteclosional changes in the olfactory system. © 1992 John Wiley & Sons, Inc. 相似文献
5.
T. A. Christensen B. R. Waldrop I. D. Harrow J. G. Hildebrand 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(4):385-399
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL
antennal lobe
- EPSP
excitatory postsynaptic potential
- GABA
-aminobutyric acid
- IPSP
inhibitory postsynaptic potential
- LN
local interneuron
- MGC
macroglomerular complex
- OB
olfactory bulb
- PN
projection neuron
- TES
N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid 相似文献
6.
Sarah L. Bush Johannes Schul 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2006,192(2):113-121
Various mechanisms have been proposed as the neural basis for pulse-rate recognition in insects and anurans, including models employing high- and low-pass filters, autocorrelation, and neural resonance. We used the katydid Tettigonia cantans to test these models by measuring female responsiveness on a walking compensator to stimuli varying in temporal pattern. Each model predicts secondary responses to certain stimuli other than the standard conspecific pulse rate. Females responded strongly to stimuli with a pulse-rate equal to half the standard rate, but not to stimuli with double the standard rate. When every second pulse or interval was varied in length, females responded only when the resulting stimuli were rhythmic with respect to the period of the standard signal. These results provide evidence rejecting the use of either high-/low-pass filter networks or autocorrelation mechanisms. We suggest that rate recognition in this species relies on the resonant properties of neurons involved in signal recognition. According to this model, signals with a pulse rate equal to the resonant frequency of the neurons stimulate the female to respond. The results are discussed with regard to both neural and evolutionary implications of resonance as a mechanism for signal recognition. In memory of Dagmar von Helversen (1944–2003) 相似文献
7.
The current study demonstrates, for the first time, the occurrence of olfactory individual recognition in a nonhuman primate species. The empirical demonstration of recognition systems requires 1) a set of cues produced by the sender (expression component), 2) the perception of these cues by the receiver (perception component), and 3) a functional response by the receiver (action component). On the basis of this framework, we analyzed by gas chromatography 35 brachial secretions collected from 10 males of Lemur catta. Moreover, we performed habituation/discrimination tests to demonstrate the perception component, and we designed a specific bioassay, based on territorial competition, to highlight a functional response to individual odors. We demonstrated that recognition of conspecific odors goes beyond the perception of cues other than individuality (familiarity, kin, season, age, and rank) and that the receiver actually forms a mental representation of a specific individual by its scent. 相似文献
8.
Gerlach G Hodgins-Davis A Avolio C Schunter C 《Proceedings. Biological sciences / The Royal Society》2008,275(1647):2165-2170
Distinguishing kin from non-kin profoundly impacts the evolution of social behaviour. Individuals able to assess the genetic relatedness of conspecifics can preferentially allocate resources towards related individuals and avoid inbreeding. We have addressed the question of how animals acquire the ability to recognize kin by studying the development of olfactory kin preference in zebrafish (Danio rerio). Previously, we showed that zebrafish use an olfactory template to recognize even unfamiliar kin through phenotype matching. Here, we show for the first time that this phenotype matching is based on a learned olfactory imprinting process in which exposure to kin individuals on day 6 post fertilization (pf) is necessary and sufficient for imprinting. Larvae that were exposed to kin before or after but not on day 6 pf did not recognize kin. Larvae isolated from all contact with conspecifics did not imprint on their own chemical cues; therefore, we see no evidence for kin recognition through self-matching in this species. Surprisingly, exposure to non-kin odour during the sensitive phase of development did not result in imprinting on the odour cues of unrelated individuals, suggesting a genetic predisposition to kin odour. Urine-born peptides expressed by genes of the immune system (MHC) are important messengers carrying information about 'self' and 'other'. We suggest that phenotype matching is acquired through a time-sensitive learning process that, in zebrafish, includes a genetic predisposition potentially involving MHC genes expressed in the olfactory receptor neurons. 相似文献
9.
P. C. Daniel M. F. Burgess C. D. Derby 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1996,178(4):523-536
Coding of binary mixtures by a population of olfactory receptor neurons in the spiny lobster (Panulirus argus) was examined. Extracellular single-unit responses of 50 neurons to seven compounds and their binary mixtures were recorded. The ability of a noncompetitive model with correction for binding inhibition to predict responses to mixtures based on responses to their components was compared with the predictive abilities of other models. This model assumes that different compounds activate different transduction processes in the same neuron leading to excitation or inhibition, and it includes a term quantifying the degree to which binding of an odorant to its receptor sites is inhibited by other compounds. The model accurately predicted the absolute response magnitude of the population of neurons for 13 of 15 mixtures assessed, which is superior to the predictive power of any of the other models. The model also accurately predicted the across neuron patterns generated by the binary mixtures, as evaluated by multidimensional scaling analysis. The results suggest that there is no emergence of unique qualities for binary mixtures relative to components of these mixtures.Abbreviations
AMP or A
adenosine-5-monophosphate
-
ANP
across neuron pattern
-
ARM
absolute response magnitude
-
ASW
artificial sea water
-
Bet or B
betaine
-
Cys or C
L-cysteine
-
Glu or G
L-glutamate
-
MDS
multidimensional scaling
-
MID
mixture interaction distance
-
NC model
noncompetitive model
-
NCBI model
noncompetitive model with correction for binding inhibition
-
C model
competitive model
-
CBI model
competitive model with correction for binding inhibition
-
MEC
more effective component
-
NH
4 or N
ammonium chloride
-
ORN
olfactory receptor neuron
-
Suc or S
DL-succinate
-
Tau or T
taurine 相似文献
10.
Caroline H. Wilson Thomas A. Christensen Alan J. Nighorn 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2007,193(7):715-728
Nitric oxide is emerging as an important modulator of many physiological processes including olfaction, yet the function of this gas in the processing of olfactory information remains poorly understood. In the antennal lobe of the moth, Manduca sexta, nitric oxide is produced in response to odor stimulation, and many interneurons express soluble guanylyl cyclase, a well-characterized nitric oxide target. We used intracellular recording and staining coupled with pharmacological manipulation of nitric oxide and soluble guanylyl cyclase to test the hypothesis that nitric oxide modulates odor responsiveness in olfactory interneurons through soluble guanylyl cyclase-dependent pathways. Nitric oxide synthase inhibition resulted in pronounced effects on the resting level of firing and the responses to odor stimulation in most interneurons. Effects ranged from bursting to strong attenuation of activity and were often accompanied by membrane depolarization coupled with a change in input resistance. Blocking nitric oxide activation of soluble guanylyl cyclase signaling mimicked the effects of nitric oxide synthase inhibitors in a subset of olfactory neurons, while other cells were differentially affected by this treatment. Together, these results suggest that nitric oxide is required for proper olfactory function, and likely acts through soluble guanylyl cyclase-dependent and -independent mechanisms in different subsets of neurons. 相似文献
11.
Genetic analysis of olfC provides evidence for a role for integrins in the development and/or function of the olfactory system of Drosophila. The olfC gene was identified on the basis of mutations that result in specific defects in behavioural responses to acetate esters,
and has been mapped to the cytogenetic interval 7D1;D5–6 on the X chromosome. The myospheroid (mys) gene maps to this region and encodes a β subunit of integrins. Integrins are αβ heterodimers which are present on the cell
surface and have been implicated in a variety of signalling roles. Mutations in mys fail to complement the olfactory deficits of olfC mutants. These defects can be rescued by misexpression of the mys
+
gene under control of a hsp70 promoter. Mutations that affect the α subunit of the position-specific integrin PS2 show a dominant interaction with olfC. These results suggest that olfC is allelic to mys and functions together with αPS2 integrins in the olfactory pathway in Drosophila.
Received: 3 November 1999 / Accepted: 17 January 2000 相似文献
12.
The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this
quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task
with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at
the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal
ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization
as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation,
a 1:1 ratio of olfactory receptor cells to olfactory glomeruli. 相似文献
13.
Annekathrin Junk Svenja Wenzel Miguel Vences Christine Nowack 《Zoologischer Anzeiger》2014,253(4):338-344
Frogs of the family Mantellidae are endemic to Madagascar and the Comoran island of Mayotte. Like many other animals in this biogeographical region, they have passed through millions of years of isolated evolution which led to ecological, physiological and anatomical specialization. The present study compares the intranasal anatomy of a mantellid, the Malagasy Common Marsh Frog (Mantidactylus betsileanus Boulenger, 1882) with that of the Malaysian Green Flying Frog (Rhacophorus reinwardtii Schlegel, 1840), a representative of the sister group of mantellids (the family Rhacophoridae). Histological examination revealed that the structure of the nasal cavities of M. betsileanus strongly deviates from the usual nasal morphology of anurans. In the typical condition, to which also R. reinwardtii conforms, the two parts of the nasal cavity (main chamber and accessory chambers), containing two different chemosensory systems (main olfactory organ and vomeronasal organ respectively), are connected by a slit-like longitudinal opening. In M. betsileanus, this elongated opening is almost completely reduced. Therefore, main chamber and accessory nasal chambers are markedly separated anatomically, leading to an enhanced spatial segregation of the two different organs of smell. Whether these anatomical alterations correspond to a more significant role of vomeronasal perception and might be related to the presence of characteristic pheromone-producing femoral glands in mantellid frogs requires further study. 相似文献
14.
The recognition of the temporal structure of sound patterns by grasshopper males was investigated in behavioural experiments. Males were tested with short (165–335 ms) song models in which the characteristic subunit pattern of syllables and pauses was modified either at the beginning or at the end of the stimuli. The highly specific responses of the animals indicate that neuronal adaptation has a substantial influence on the detection of the pauses which are essential cues for the subunit structure: pauses were less likely detected shortly after the beginning of a song model than at later positions. Even adaptation in auditory neurons that was induced by unspecific stimulation (with unmodulated noise) facilitated the processing of sound envelopes. The effects of stimulus prolongation and introduction of pauses appeared to combine linearly, similar to the effects of introducing two pauses instead of a single one. In the responses to some song models large interindividual differences were observed. Comparison across stimuli and repeated testing of a smaller number of individuals indicated a considerable consistency of behavioural preferences. However, the data yielded no clear evidence for the existence of individually distinct processing types among males, that conceivably would focus on different features of the stimuli. 相似文献
15.
Claire Martin Rmi Gervais Pascal Chabaud Belkacem Messaoudi Nadine Ravel 《Journal of Physiology》2004,98(4-6):467-478
In the mammalian olfactory system, oscillations related to odour representation have been described in field potential activities. Previous results showed that in olfactory bulb (OB) of awake rats engaged in an olfactory learning, odour presentation produced a decrease of oscillations in gamma frequency range (60-90 Hz) associated with a power increase in beta frequency range (15-40 Hz). This response pattern was strongly amplified in trained animals. The aim of this work was twofold: whether learning also induces similar changes in OB target structures and whether such OB response depends on its centrifugal inputs. Local field potentials (LFPs) were recorded through chronically implanted electrodes in the OB, piriform and enthorhinal cortices of freely moving rats performing an olfactory discrimination. Oscillatory activities characteristics (amplitude, frequency and time-course) were extracted in beta and gamma range by a wavelet analysis. First, we found that odour induced beta oscillatory activity was present not only in the OB, but also in the other olfactory structures. In each recording site, characteristics of the beta oscillatory responses were dependent of odour, structure and learning level. Unilateral section of the olfactory peduncle was made before training, and LFPs were symmetrically recorded in the two bulbs all along the acquisition of the learning task. Data showed that deprivation of centrifugal feedback led to an increase of spontaneous gamma activity. Moreover, under this condition olfactory learning was no longer associated with the typical large beta band. As a whole, learning modulation of the beta oscillatory response in olfactory structures may reflect activity of a distributed functional network involved in odour representation. 相似文献
16.
A fundamental problem in neuroscience, to which Prof. Segundo has made seminal contributions, is to understand how action
potentials represent events in the external world. The aim of this paper is to review the issue of neural coding in the context
of the rodent whiskers, an increasingly popular model system. Key issues we consider are: the role of spike timing; mechanisms
of spike timing; decoding and context-dependence. Significant insight has come from the development of rigorous, information
theoretic frameworks for tackling these questions, in conjunction with suitably designed experiments. We review both the theory
and experimental studies. In contrast to the classical view that neurons are noisy and unreliable, it is becoming clear that
many neurons in the subcortical whisker pathway are remarkably reliable and, by virtue of spike timing with millisecond-precision,
have high bandwidth for conveying sensory information. In this way, even small (~200 neuron) subcortical modules are able
to support the sensory processing underlying sophisticated whisker-dependent behaviours. Future work on neural coding in cortex
will need to consider new findings that responses are highly dependent on context, including behavioural and internal states.
This article is part of a special issue on Neuronal Dynamics of Sensory Coding. 相似文献
17.
Wang Xialu Zhang Jinghai Chen Ying Ma Youlei Zou Wenjun Ding Guoyuan Li Wei Zhao Mingyi Wu Chunfu Zhang Rong 《BMB reports》2013,46(7):358-363
In this paper, we firstly reported a C-type lectin cDNA clone of 1029 bps from the larvae of A. Pernyi (Ap-CTL) using PCR and RACE techniques. The full-length cDNA contains an open reading frame encoding 308 amino acid residues which has two different carbohydrate-recognition domains (CRDs) arranged in tandem. To investigate the biological activities in the innate immunity, recombinant Ap-CTL was expressed in E. coli with a 6-histidine at the amino-terminus (Ap-rCTL). Besides acted as a broad-spectrum recognition protein binding to a wide range of PAMPs and microorganisms, Ap-rCTL also had the ability to recognize and trigger the agglutination of bacteria and fungi. In the proPO activation assay, Ap-rCTL specifically restored the PO activity of hemolymph blocked by anti-Ap-rCTL antibody in the presence of different PAMPs or microorganisms. In summary, Ap-rCTL plays an important role in insect innate immunity as an pattern recognition protein. [BMB Reports 2013; 46(7): 358-363] 相似文献
18.
Rosen classified sciences into two categories: formalizable and unformalizable. Whereas formalizable sciences expressed in terms of mathematical theories were highly valued by Rutherford, Hutchins pointed out that unformalizable parts of soft sciences are of genuine interest and importance. Attempts to build mathematical theories for biology in the past century was met with modest and sporadic successes, and only in simple systems. In this article, a qualitative model of humans' high creativity is presented as a starting point to consider whether the gap between soft and hard sciences is bridgeable. Simonton's chance-configuration theory, which mimics the process of evolution, was modified and improved. By treating problem solving as a process of pattern recognition, the known dichotomy of visual thinking vs. verbal thinking can be recast in terms of analog pattern recognition (non-algorithmic process) and digital pattern recognition (algorithmic process), respectively. Additional concepts commonly encountered in computer science, operations research and artificial intelligence were also invoked: heuristic searching, parallel and sequential processing. The refurbished chance-configuration model is now capable of explaining several long-standing puzzles in human cognition: a) why novel discoveries often came without prior warning, b) why some creators had no ideas about the source of inspiration even after the fact, c) why some creators were consistently luckier than others, and, last but not least, d) why it was so difficult to explain what intuition, inspiration, insight, hunch, serendipity, etc. are all about. The predictive power of the present model was tested by means of resolving Zeno's paradox of Achilles and the Tortoise after one deliberately invoked visual thinking. Additional evidence of its predictive power must await future large-scale field studies. The analysis was further generalized to constructions of scientific theories in general. This approach is in line with Campbell's evolutionary epistemology. Instead of treating science as immutable Natural Laws, which already existed and which were just waiting to be discovered, scientific theories are regarded as humans' mental constructs, which must be invented to reconcile with observed natural phenomena. In this way, the pursuit of science is shifted from diligent and systematic (or random) searching for existing Natural Laws to firing up humans' imagination to comprehend Nature's behavioral pattern. The insights gained in understanding human creativity indicated that new mathematics that is capable of handling effectively parallel processing and human subjectivity is sorely needed. The past classification of formalizability vs. non-formalizability was made in reference to contemporary mathematics. Rosen's conclusion did not preclude future inventions of new biology-friendly mathematics. 相似文献
19.
To study the projection of a special type of sensory neuron called crypt cells in the olfactory system in crucian carp, Carassius carassius, we applied the neural tracer 1,1-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) in the olfactory bulb (OB). Small crystals of DiI were applied in a small area at the synaptic region at the ventral part of the OB, where a population of secondary neurons specific for sex pheromones has been identified. In those samples (4 out of 24) where only axons in the lateral bundle of the medial olfactory tract were stained, the majority (50-66%) of olfactory sensory neurons stained were crypt cells situated in the peripheral layer of the olfactory epithelium. Because this bundle of the tract mediates reproductive behavior, it is conceivable that crypt cells express olfactory receptors for sex pheromones. 相似文献
20.
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli. 相似文献