首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel adenovirus system for analyzing the adenovirus entry pathway has been developed that contains green fluorescent protein bound to the encapsidated viral DNA (AdLite viruses). AdLite viruses enter host cells and accumulate around the nuclei and near the microtubule organizing centers (MTOC). In live cells, individual AdLite particles were observed trafficking both toward and away from the nucleus. Depolymerization of microtubules during infection prevented AdLite accumulation around the MTOC; however, it did not abolish perinuclear localization of AdLite particles. Furthermore, depolymerization of microtubules did not affect AdLite motility and did not affect gene expression from wild-type adenovirus and adenovirus-derived vectors. These data revealed that adenovirus intracellular motility and nuclear targeting can be supported by a mechanism that does not rely on the microtubule network.  相似文献   

2.
3.
Construction of adenoviral vectors   总被引:12,自引:0,他引:12  
Recombinant adenovirus vectors have proven to be useful tools in facilitating gene transfer. Construction of such vectors requires a knowledge of the adenovirus genome structure and its life cycle. A commonly used recombinant adenovirus involves deletion of the E1 region; such a recombinant is traditionally produced by overlap recombination after contransfection of 293 cells with a plasmid shuttle vector and a large right-end restriction fragment of viral DNA. The shuttle vector contains a cassette for a transgene placed in region E1 and flanking sequences from adenovirus for recombination. Normally, a high background of parental virus results because of the difficulty in separating right-end restriction fragment length DNA from uncut DNA. This paper describes a negative selection based on the traditional cotransfection method using viral DNA from an E1-deleted adenoviral recombinant that expresses green fluorescent protein (GFP). In situ fluorescent microscopy is used to distinguish the recombinant plaques (white or nonfluorescent) from the parental virus plaques (green or fluorescent). In addition, this system allows for the detection of contaminating parental virus at later stages when production lots of the recombinant vector are being made.  相似文献   

4.
5.
Indirect immunofluorescence labeling of normal rat kidney (NRK) cells with antibodies recognizing a lysosomal glycoprotein (LGP 120; Lewis, V., S.A. Green, M. Marsh, P. Vihko, A. Helenius, and I. Mellman, 1985, J. Cell Biol., 100:1839-1847) reveals that lysosomes accumulate in the region around the microtubule-organizing center (MTOC). This clustering of lysosomes depends on microtubules. When the interphase microtubules are depolymerized by treatment of the cells with nocodazole or during mitosis, the lysosomes disperse throughout the cytoplasm. Lysosomes recluster rapidly (within 30-60 min) in the region of the centrosomes either upon removal of the drug, or, in telophase, when repolymerization of interphase microtubules has occurred. During this translocation process the lysosomes can be found aligned along centrosomal microtubules. Endosomes and lysosomes can be visualized by incubating living cells with acridine orange. We have analyzed the movement of these labeled endocytic organelles in vivo by video-enhanced fluorescence microscopy. Translocation of endosomes and lysosomes occurs along linear tracks (up to 10 microns long) by discontinuous saltations (with velocities of up to 2.5 microns/s). Organelles move bidirectionally with respect to the MTOC. This movement ceases when microtubules are depolymerized by treatment of the cells with nocodazole. After nocodazole washout and microtubule repolymerization, the translocation and reclustering of fluorescent organelles predominantly occurs in a unidirectional manner towards the area of the MTOC. Organelle movement remains unaffected when cells are treated with cytochalasin D, or when the collapse of intermediate filaments is induced by microinjected monoclonal antivimentin antibodies. It can be concluded that translocation of endosomes and lysosomes occurs along microtubules and is independent of the intermediate filament and microfilament networks.  相似文献   

6.
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma and several other malignancies. The lack of an efficient infection system has impeded the understanding of KSHV-related pathogenesis. A genetic approach was used to isolate infectious KSHV. Recombinant bacteria artificial chromosome (BAC) KSHV containing hygromycin resistance and green fluorescent protein (GFP) markers was generated by homologous recombination in KSHV-infected BCBL-1 cells. Recombinant KSHV genomes from cell clones that were resistant to hygromycin, expressed GFP, and produced infectious virions after induction with tetradecanoyl phorbol acetate (TPA) were rescued in Escherichia coli and reconstituted in 293 cells. Several 293 cell lines resulting from infection with recombinant virions induced from a full-length recombinant KSHV genome, named BAC36, were obtained. BAC36 virions established stable latent infection in 293 cells, harboring 1 to 2 copies of viral genome per cell and expressing viral latent proteins, with approximately 0.5% of cells undergoing spontaneous lytic replication, which is reminiscent of KSHV infection in Kaposi's sarcoma tumors. TPA treatment induced BAC36-infected 293 cell lines into productive lytic replication, expressing lytic proteins and producing virions that efficiently infected normal 293 cells with a approximately 50% primary infection rate. BAC36 virions were also infectious to HeLa and E6E7-immortalized human endothelial cells. Since BAC36 can be efficiently shuttled between bacteria and mammalian cells, it is useful for KSHV genetic analysis. The feasibility of the system was illustrated through the generation of a KSHV mutant with the vIRF gene deleted. This cellular model is useful for the investigation of KSHV infection and pathogenesis.  相似文献   

7.
The Rep proteins encoded by the adeno-associated virus type 2 (AAV) play a crucial role in the rescue, replication, and integration of the viral genome. In the absence of a helper virus, little expression of the AAV Rep proteins occurs, and the AAV genome fails to undergo DNA replication. Since previous studies have established that expression of the Rep78 and Rep68 proteins from the viral p5 promoter is controlled by the Rep-binding site (RBS) and the YY1 factor-binding site (YBS), we constructed a number of recombinant AAV plasmids containing mutations and/or deletions of the RBS and the YBS in the p5 promoter. These plasmids were transfected in HeLa or 293 cells and analyzed for the potential to undergo AAV DNA rescue and replication. Our studies revealed that (i) a low-level rescue and autonomous replication of the wild-type AAV genome occurred in 293 but not in HeLa cells; (ii) mutations in the RBS resulted in augmented expression from the p5 promoter, leading to more efficient rescue and/or replication of the AAV genome in 293 but not in HeLa cells; (iii) little rescue and/or replication occurred from plasmids containing mutations in the YBS alone in the absence of coinfection with adenovirus; (iv) expression of the adenovirus E1A gene products was insufficient to mediate rescue and/or replication of the AAV genome in HeLa cells; (v) autonomously replicated AAV genomes in 293 cells were successfully encapsidated in mature progeny virions that were biologically active in secondary infection of HeLa cells in the presence of adenovirus; and (vi) stable transfection of recombinant AAV plasmids containing a gene for resistance to neomycin significantly affected stable integration only in 293 cells, presumably because rescue and autonomous replication of the AAV genome from these plasmids occurred in 293 cells but not in HeLa or KB cells. These data suggest that in the absence of adenovirus, the AAV Rep protein-RBS interaction plays a dominant role in down-regulating viral gene expression from the p5 promoter and that perturbation in this interaction is sufficient to confer autonomous replication competence to AAV in 293 cells.  相似文献   

8.
Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.  相似文献   

9.
Production of gutted, or helper-dependent, adenovirus vectors by current methods is inefficient. Typically, a plasmid form of the gutted genome is transfected with helper viral DNA into 293 cells; the resulting lysate is serially passaged to increase the titer of gutted virions. Inefficient production of gutted virus particles after cotransfection is likely due to suboptimal association of replication factors with the abnormal origins found in these plasmid substrates. To test this hypothesis, we explored whether gutted virus production would be facilitated by transfection into cells expressing various viral replication factors. We observed that C7 cells, coexpressing adenoviral DNA polymerase and preterminal protein, converted plasmid DNA into replicating virus approximately 50 times more efficiently than did 293 cells. This property of C7 cells can be used to greatly increase the efficiency of gutted virus production after cotransfection of gutted and helper viral DNA. These cells should also be useful for generation of recombinant adenovirus from any plasmid-based precursor.  相似文献   

10.
Locomoting cells are characterized by a pronounced external and internal anterior-posterior polarity. One of the events associated with cell polarization at the onset of locomotion is a shift of the centrosome, or MTOC, ahead of the nucleus. This position is believed to be of strategic importance for directional cell movement and cell polarity. We have used BSC-1 cells at the edge of an in vitro wound to clarify the causal relationship between MTOC position and the initiation of cell polarization. We find that pronounced cell polarization (the extension of a lamellipod) can take place in the absence of MTOC repositioning or microtubules. Conversely, MTOCs will reposition even after lamellar extension and cell polarization have occurred. Repositioning requires microtubules that extend to the cell periphery and is independent of selective detyrosination of microtubules extending towards the cell front. Significantly, MTOCs maintain, or at least attempt to maintain, a position at the cell's centroid. This is most clearly demonstrated in wounded monolayers of enucleated cells where the MTOC closely follows the centroid position. We suggest that the primary response to the would is the biased extension of a lamellipod, which can occur in the absence of microtubules and MTOC repositioning. Lamellipod extension leads to a shift of the cell's centroid towards the wound. The MTOC, in an attempt to maintain a position near the cell center, will follow. This will automatically put the MTOC ahead of the nucleus in the vast majority of cells. The nucleus as a reference for MTOC position may not be as meaningful as previously thought.  相似文献   

11.
Reclustering of scattered Golgi elements occurs along microtubules   总被引:43,自引:0,他引:43  
Depolymerization of the interphase microtubules by nocodazole results in the scattering and apparent fragmentation of the Golgi apparatus in Vero fibroblast cells. Upon removal of the drug, the interphase microtubules repolymerize, and the scattered Golgi elements move back to the region around the microtubule-organizing center (MTOC) within 40 to 60 min. Using a fluorescent lipid analogue (C6-NBD-ceramide) as a vital stain for the scattered Golgi elements, their relocation was visualized by video-enhanced fluorescence microscopy in Vero cells maintained at 20 degrees C. The NBD-labeled structures were identified as Golgi elements by their colocalization with galactosyltransferase in the fixed cells. During reclustering, NBD-labeled Golgi elements were observed to move by discontinuous saltations towards the MTOC with velocities of 0.1 to 0.4 micron/s. Paths along which Golgi elements moved were super-imposable on microtubules visualized by indirect immunofluorescence. Neither the collapse of intermediate filaments caused by microinjection of antibodies to vimentin nor the disruption of microfilaments by cytochalasin D had an effect on the reclustering of Golgi elements or the positioning of the Golgi apparatus. These data show that scattered Golgi elements move along microtubules back to the region around the MTOC, while neither intact intermediate filaments nor microfilaments are involved.  相似文献   

12.
Although retrovirus egress and budding have been partly unraveled, little is known about early stages of the replication cycle. In particular, retroviral uncoating, a process during which incoming retroviral cores are altered to allow the integration of the viral genome into host chromosomes, is poorly understood. To get insights into these early events of the retroviral cycle, we have used foamy complex retroviruses as a model. In this report, we show that a protease-defective foamy retrovirus is noninfectious, although it is still able to bud and enter target cells efficiently. Similarly, a retrovirus mutated in an essential viral protease-dependent cleavage site in the central part of Gag is noninfectious. Following entry, wild-type and mutant retroviruses are able to traffic along microtubules towards the microtubule-organizing center (MTOC). However, whereas nuclear import of Gag and of the viral genome was observed for the wild-type virus as early as 8 hours postinfection, incoming capsids and genome from mutant viruses remained at the MTOC. Interestingly, a specific viral protease-dependent Gag cleavage product was detected only for the wild-type retrovirus early after infection, demonstrating that cleavage of Gag by the viral protease at this stage of the virus life cycle is absolutely required for productive infection, an unprecedented observation among retroviruses.  相似文献   

13.
用大肠杆菌同源重组获得克隆化重组腺病毒基因组   总被引:8,自引:0,他引:8  
利用大肠杆菌细胞内质粒间同源重组获得克隆化重组腺病毒基因组 DNA,高效构建携带有外源基因的均一重组腺病毒 .将带有狂犬病毒糖蛋白 (GP)基因和加强型 GFP(enhanced GFP,EGFP)表达盒的重组穿梭质粒 p Ad- Track- CMV/ GP与腺病毒骨架载体质粒 p Ad Easy- 1一起同时电击共转化大肠杆菌 BJ51 83.在 BJ51 83细胞内 ,带有同源序列的重组穿梭质粒与骨架载体可进行同源重组 ,得到以质粒形式存在的克隆化重组腺病毒基因组 p Ad- GP’.以 p Ad- GP’为模板 ,经DNA测序确认 GP基因成功整合入此质粒中的腺病毒基因组 E1区外源基因表达盒中 .线形化的p Ad- GP’转染 2 93细胞后可得到基因组结构均一、在 E1区插入有 GP和 EGFP表达盒的重组腺病毒 ,病毒滴度可达 1× 1 0 8pfu/ ml.电镜下此重组病毒颗粒直径约为 70 nm,略呈球形 ,用荧光显微镜观察感染细胞有很强的 EGFP表达 .实验表明 :利用大肠杆菌同源重组获得克隆化的重组腺病毒基因组 DNA,可高效制备高滴度的均一重组腺病毒  相似文献   

14.
Cytoplasmic dynein,together with its cofactor dynactin, transports incoming herpes simplex virus type 1 (HSV-1) capsids along microtubules (MT) to the MT-organizing center (MTOC). From the MTOC, capsids move further to the nuclear pore, where the viral genome is released into the nucleoplasm. The small capsid protein VP26 can interact with the dynein light chains Tctex1 (DYNLT1) and rp3 (DYNLT3) and may recruit dynein to the capsid. Therefore, we analyzed nuclear targeting of incoming HSV1-DeltaVP26 capsids devoid of VP26 and of HSV1-GFPVP26 capsids expressing a GFPVP26 fusion instead of VP26. To compare the cell entry of different strains, we characterized the inocula with respect to infectivity, viral genome content, protein composition, and particle composition. Preparations with a low particle-to-PFU ratio showed efficient nuclear targeting and were considered to be of higher quality than those containing many defective particles, which were unable to induce plaque formation. When cells were infected with HSV-1 wild type, HSV1-DeltaVP26, or HSV1-GFPVP26, viral capsids were transported along MT to the nucleus. Moreover, when dynein function was inhibited by overexpression of the dynactin subunit dynamitin, fewer capsids of HSV-1 wild type, HSV1-DeltaVP26, and HSV1-GFPVP26 arrived at the nucleus. Thus, even in the absence of the potential viral dynein receptor VP26, HSV-1 used MT and dynein for efficient nuclear targeting. These data suggest that besides VP26, HSV-1 encodes other receptors for dynein or dynactin.  相似文献   

15.
Adenoviruses (Ad) must deliver their genomes to the nucleus of the target cell to initiate an infection. Following entry into the cell and escape from the endosome, Ad traffics along the microtubule cytoskeleton toward the nucleus. In the final step in Ad trafficking, Ad must leave the microtubule and establish an association with the nuclear envelope. We hypothesized that in cells lacking a nucleus, the capsid moves to and associates with the microtubule organizing center (MTOC). To test this hypothesis, we established an experimental system to examine Ad trafficking in enucleated cells compared to Ad trafficking in intact, mock-enucleated cells. Enucleation of a monolayer of A549 human lung epithelial cells was accomplished by depolymerization of the actin cytoskeleton followed by centrifugation. Upon infection of enucleated cells with Cy3-labeled Ad, the majority of Ad capsid trafficked to a discrete, centrally located site which colocalized with pericentrin, a component of the MTOC. MTOC-associated Ad had escaped from endosomes and thus had direct access to MTOC components. Ad localization at this site was sensitive to the microtubule-depolymerizing agent nocodazole, but not to the microfilament-depolymerizing agent cytochalasin B, indicating that intact microtubules were required to maintain the localization with the MTOC. Ad localization to the MTOC in the enucleated cells was stable, as demonstrated by continuing Ad localization with pericentrin for more than 5 h after infection, a strong preference for Ad arrival at rather than Ad departure from the MTOC, and minimal redistribution of Ad between MTOCs within a single cell. In summary, the data demonstrate that the Ad capsid establishes a stable interaction with the MTOC when a nucleus is not present, suggesting that dissociation of Ad from microtubules likely requires nuclear factors.  相似文献   

16.
Human adenovirus cloning vectors based on infectious bacterial plasmids   总被引:8,自引:0,他引:8  
By making use of the fact that human adenovirus DNA circularizes in infected cells, and that circular forms of the viral genome are infectious, we have developed an improved adenovirus-based cloning system. A deletion mutant of adenovirus type 5 (Ad5) with deletions in early regions 1 (E1) and 3 (E3) was converted to a bacterial plasmid which can regenerate infectious virus following transfection into human 293 cells. A single XbaI recognition site in the deleted E3 region serves as a site for the insertion of foreign DNA. We have used this system to clone a number of genes into the Ad5 genome and describe the insertion of the neomycin/G418 resistance marker into Ad5 as an example.  相似文献   

17.
18.
F. Omura  Y. Fukui 《Protoplasma》1985,127(3):212-221
Summary The microtubule organizing center (MTOC) was isolated fromDictyostelium discoideum to investigate the fine structure of the components as the first step in clarifying its molecular organization and function. The isolation protocol was designed to preserve microtubules bound to the MTOC by using indirect immunofluorescence employing anti--tubulin. After cell lysis with Triton X-100, the MTOCs were isolated in association with the nucleus by centrifugation in a microtubule-stabilizing buffer. The MTOC was found to be bound to the nucleus via an electron-dense fibrous structure, and this linkage could not be destroyed by KI, KCl, or sonication. We named this complex composed of microtubules, MTOC, and the anchor the MTOC-complex. Negative staining of the isolated MTOC-complex revealed that distinct vesicles decorated with 11-nm tacks were associated with microtubules radiating from the MTOC. Fine filaments, 4–5 nm wide, were also present close to the MTOC, aligned parallel to the microtubules. The three-dimensional profile of the central core of the MTOC, examined by transmission electron microscopy of serial thin sections of the isolated MTOC fraction supplemented by a microcomputer analysis, was concluded to be a matchbox-like cuboid (180 × 210 × 370 nm) of 15 layers.We propose that theDictyostelium MTOC is the structural domain of a more complicated unit composed of 1. MTOC, 2. microtubules, and 3. a firm fibrous linkage connecting the MTOC to the nucleus, with the MTOC core being a multilayered cuboid, associated with nodules and surrounded by amorphous electron-dense material including peculiar vesicles with 11 nm-tacks. The possible functions of these domains are discussed.  相似文献   

19.
目前关于腺病毒感染及胞内运输的分子机制研究主要来源于C亚群腺病毒在肿瘤细胞系中的研究结果。腺病毒对靶细胞的感染及胞内运输大致分为几步:病毒与细胞表面受体的特异结合,胞吞介导的病毒内化,病毒逃脱胞内体进入细胞质,病毒沿着微管运输至核孔,病毒基因组入核。病毒胞内运输效率极高,感染后1 h,80%以上的病毒基因组被送至核内。但是腺病毒胞内的运输方式会因以下几个因素变化而产生差异:靶细胞类型,细胞生理状态,病毒血清型。文中对腺病毒感染靶细胞及胞内运输的已有分子机制进行综述,为临床基因治疗用途的病毒载体研发提供思路。  相似文献   

20.
Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labeling for gamma-tubulin, but not pericentrin, from the MTOC suggests a targeting of gamma-tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of gamma-tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3C(pro). In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect gamma-tubulin distribution, and the microtubule network remained relatively unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号