首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
[3H]Mannose- and [3H]glucosamine-labeled lactosamine-type glycopeptides of Semliki Forest virus membrane proteins were stripped of their fucose, sialic acid, galactose and distal N-acetylglucosamine residues and subsequently digested with endo-beta-D-N-acetylglucosaminidase D from Diplococcus pneumoniae. Two products were obtained, a neutral tetrasaccharide and a residual glycopeptide fraction. The tetrasaccharide appeared to consist of two alpha-mannose residues, one beta-mannose residue and one N-acetylglucosamine residue located at the reducing terminus of the molecule. Results of Smith degradation, beta-elimination and acetolysis were compatible with four structures; (1) Man alpha-1-3[Man alpha 1-6]Man beta 1-4GlcNAc; (2) Man alpha 1-3Man beta 1-4[Man alpha 1-6] GlcNAc; (3) Man alpha 1-3Man alpha 1-4[Man beta 1-6]GlcNAc, or (4) Man alpha 1-6Man alpha 1-3Man beta-1-4GlcNAc. The reactivity of the viral glycopeptides with endo-beta-D-N-acetylglucosaminidase D and the chromatographic properties of the liberated core tetrasaccharide suggest that its most likely structure was Man alpha 1-3[Man alpha-1-6]Man beta 1-4GlcNAc. The core tetrasaccharide of glycans of membrane protein E3, one of the viral membrane proteins obtained from infected cell, was similar to that of the virion glycans.  相似文献   

2.
There is increasing interest in biologics, i.e. human-originated biological pharmaceutics. Most of the protein drugs developed so far, such as immunoglobulins and erythropoietin, are secreted glycoproteins; as a result, any non-human-type glycans, such as αGal and NeuGc, derived from animal cells and sera must be removed to circumvent undesirable immunogenic reactions. In this study, we made an extensive search for potential xenoantigenic glycans among a panel of mammalian sera. As a result, sera belonging to the order Artiodactyla, i.e. bovine, lamb and goat sera, were found to contain substantial amounts of hypersialylated biantennary glycans closely associated with a type-I lactosamine structure containing a unique tetrasaccharide, Siaα2-3Galβ1-3(Siaα2-6)GlcNAc. In all three Artiodactyla sera, the most abundant structure was Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-3[Siaα2-6Galβ1-4GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc. A dually hypersialylated biantennary structure, Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-3[Siaα2-3Galβ1-3(Siaα2-6)GlcNAcβ1-2Manα1-6]Manβ1-4GlcNAcβ1-4GlcNAc, was also abundant (10%) in bovine serum. The amount of hypersialylated glycans among total sialylated glycans was 46, 26 and 23% in bovine, lamb and goat sera, respectively. On the other hand, such structures could not be detected in the sera of other animals including human. The biological functions and the immunogenicity of the hypersialylated glycans in these animals remain to be elucidated; however, it is worth noting that glycoproteins biosynthesized from Artiodactyla cells and those contaminated with bovine serum might enhance undesirable antigenicity in human patients.  相似文献   

3.
While the structure of the major oligosaccharide of Japanese quail ovomucoid was reported earlier (Hase, S. et al. (1982) J. Biochem. 91, 735-737), the structures of the minor oligosaccharide units were investigated for the first time in the present studies. For this purpose, the glycans of the protein were liberated from the polypeptide chain by hydrazinolysis. After N-acetylation, the reducing ends of the oligosaccharides obtained were coupled with 2-aminopyridine, and then the resulting fluorescent derivatives were purified by Bio-Gel P-2 column chromatography and reversed-phase HPLC. The chemical structures of two minor oligosaccharide units were determined with the aid of exoglycosidases, and by methylation analysis and Smith degradation. The results demonstrated that the ovomucoid contains the following two monoantennary glycans: Man alpha 1-6(Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc and Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc. The latter structure was not predicted by the classical metabolic pathway for the N-glycans to be formed. The structures of three additional minor heterosaccharides were deduced from their elution positions on HPLC together with the results of determination of their molecular sizes and the HPLC elution positions of their enzymatic degradation products. It is noteworthy that for the latter procedure for the estimation of the structures of oligosaccharides only minute quantities of glycans (several hundreds pmol) are required.  相似文献   

4.
The carbohydrate moieties of Erythrina cristagalli lectin were released as oligosaccharides by hydrazinolysis, followed by N-acetylation and reduction with NaB3H4. Fractionation of the tritium-labelled oligosaccharide mixture by Bio-Gel P-4 column chromatography and high-voltage borate electrophoresis revealed that it is composed of five neutral oligosaccharides. Structural studies by sequential exoglycosidase digestion in combination with methylation analysis and two-dimensional 1H-NMR showed that the major component was the fucose-containing heptasaccharide Man alpha 3(Man alpha 6)(Xyl beta 2)Man beta 4GlcNAc beta 4(Fuc alpha 3)GlcNAcol. This is the first report of such a structure in plant lectins. Small amounts of the corresponding afucosyl hexasaccharide were also identified, as well as three other minor components. The structure of the heptasaccharide shows the twin characteristics of a newly established family of N-linked glycans, found to date only in plants. The characteristics are substitution of the common pentasaccharide core [Man alpha 3(Man alpha 6)Man beta 4GlcNAc beta 4GlcNAc] by a D-xylose residue linked beta 1----2 to the beta-mannosyl residue and an L-fucose residue linked alpha 1----3 to the reducing terminal N-acetylglucosamine residue. The oligosaccharide heterogeneity pattern for Erythrina cristagalli lectin was also found for the lectins from four other Erythrina species and the lectins of two other legumes, Sophora japonica and Lonchocarpus capassa.  相似文献   

5.
Caenorhabditis elegans is an excellent model for morphogenetic research. However, little information is available on the structure of cell-surface glycans in C. elegans, although several lines of evidence have suggested a role for these glycans in cell-cell interactions during development. In this study, we analyzed N-glycan structures. Oligosaccharides liberated by hydrazinolysis from a total membrane fraction were labeled by pyridylamination, and around 90% of the N-glycans were detected as neutral oligosaccharides. The most dominant structure was Man(alpha)1-6(Man(alpha)1-3)Man(beta)1-4GlcNAc(beta)1-4GlcNAc, which is commonly found in insects. Branching structures of major oligomannose-type glycans were the same as those found in mammals. Structures that had a core fucose or non-reducing end N-acetylglucosamine were also identified, but ordinary complex-type glycans with N-acetyllactosamine were not detected as major components.  相似文献   

6.
Analysis of the glycosylation of human serum IgD and IgE indicated that oligomannose structures are present on both Igs. The relative proportion of the oligomannose glycans is consistent with the occupation of one N-linked site on each heavy chain. We evaluated the accessibility of the oligomannose glycans on serum IgD and IgE to mannan-binding lectin (MBL). MBL is a member of the collectin family of proteins, which binds to oligomannose sugars. It has already been established that MBL binds to other members of the Ig family, such as agalactosylated glycoforms of IgG and polymeric IgA. Despite the presence of potential ligands, MBL does not bind to immobilized IgD and IgE. Molecular modeling of glycosylated human IgD Fc suggests that the oligomannose glycans located at Asn(354) are inaccessible because the complex glycans at Asn(445) block access to the site. On IgE, the additional C(H)2 hinge domain blocks access to the oligomannose glycans at Asn(394) on one H chain by adopting an asymmetrically bent conformation. IgE contains 8.3% Man(5)GlcNAc(2) glycans, which are the trimmed products of the Glc(3)Man(9)GlcNAc(2) oligomannose precursor. The presence of these structures suggests that the C(H)2 domain flips between two bent quaternary conformations so that the oligomannose glycans on each chain become accessible for limited trimming to Man(5)GlcNAc(2) during glycan biosynthesis. This is the first study of the glycosylation of human serum IgD and IgE from nonmyeloma proteins.  相似文献   

7.
The extent of glycans heterogeneity in a pathological human immunoglobulin M ZAJ has been studied on oligosaccharides released by hydrazinolysis from the purified glycoprotein. After reduction with NaB3H4, asparagine-linked carbohydrate chains were separated by affinity chromatography on concanavalin A-Sepharose into oligomannosidic and N-acetyllactosaminic types. Glycans of the oligomannosidic type were further fractionated by HPLC and those of the N-acetyllactosamine type by preparative high-voltage electrophoresis. The primary structure of the main oligosaccharides was investigated on the basis of micro-methylation analysis, mass spectrometry and sequential exo-glycosidase digestion. Glycans of the oligomannosidic type varied in size from Man5GlcNAc2 to Man9GlcNAc2. N-Acetyllactosaminic glycans were found of the biantennary, bisected-biantennary and triantennary types. They presented a higher degree of heterogeneity due to the presence of a variable number of NeuAc and fucose residues. The new structures we report here were in addition to the major biantennary one we previously described on the basis of methylation analysis and 500 MHz 1H-NMR spectroscopy (Cahour, A., Debeire, P., Hartmann, L., Montreuil, J., Van Halbeek, H. and Vliegenthart, J.F.G. (1984) FEBS Lett. 170, 343-349): NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)[Gal(beta 1-4)Glc-NAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4)]Glc-NAc(beta 1-4) [Fuc(alpha 1-6)]GlcNAc.  相似文献   

8.
The cyanobacterial protein MVL inhibits HIV-1 envelope-mediated cell fusion at nanomolar concentrations by binding to high mannose N-linked carbohydrate on the surface of the envelope glycoprotein gp120. Although a number of other carbohydrate-binding proteins have been shown to inhibit HIV-1 envelope-mediated cell fusion, the specificity of MVL is unique in that its minimal target comprises the Man(alpha)(1-->6)Man(beta)(1-->4)GlcNAc(beta)(1-->4)GlcNAc tetrasaccharide core of oligomannosides. We have solved the crystal structures of MVL free and bound to the pentasaccharide Man3GlcNAc2 at 1.9- and 1.8-A resolution, respectively. MVL is a homodimer stabilized by an extensive intermolecular interface between monomers. Each monomer contains two structurally homologous domains with high sequence similarity connected by a short five-amino acid residue linker. Intriguingly, a water-filled channel is observed between the two monomers. Residual dipolar coupling measurements indicate that the structure of the MVL dimer in solution is identical to that in the crystal. Man3GlcNAc2 binds to a preformed cleft at the distal end of each domain such that a total of four independent carbohydrate molecules associate with each homodimer. The binding cleft provides shape complementarity, including the presence of a deep hydrophobic hole that accommodates the N-acetyl methyl at the reducing end of the carbohydrate, and specificity arises from 7-8 intermolecular hydrogen bonds. The structures of MVL and the MVL-Man3GlcNAc2 complex further our understanding of the molecular basis of high affinity and specificity in protein-carbohydrate recognition.  相似文献   

9.
Two new oligosaccharides were isolated from the urine of a patient with GM1 gangliosidosis. Final purification of the oligosaccharides was accomplished by capillary supercritical fluid chromatography. Structural analysis was by chemical analysis, chemical-ionization mass spectrometry and 400-MHz 1H-NMR spectroscopy, leading to two primary structures. The first is derived from a classical triantennary N-acetyllactosamine-type glycan: Gal beta 1-4GlcNAc beta 1-4(Gal beta 1-4GlcNAc beta 1-2)Man alpha 1-3Man beta 1-4GlcNAc. The second is unusual with a terminal disaccharide Gal beta 1-6Gal, which had not yet been described for glycans of the N-acetyllactosamine type: Gal beta 1-6Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6Man beta 1-4GlcNAc.  相似文献   

10.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

11.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

12.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

13.
The binding to concanavalin A (Con A) by pyridylaminated oligosaccharides derived from bromelain (Man alpha 1,6(Xyl beta 1, 2) Man beta 1, 4GlcNAc beta 1, 4(Fuc alpha 1, 3)GlcNAc), horseradish peroxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1, 3) GlcNAc), bee venom phospholipase A2 (Man alpha 1,6Man beta 1,4GlcNAc beta 1,4GlcNAc and Man alpha 1,6(Man alpha 1, 3)Man beta 1,4GlcNAc beta 1, 4 (Fuc alpha 1, 3)GlcNAc) and zucchini ascorbate oxidase (Man alpha 1,6(Man alpha 1, 3) (Xyl beta 1, 2)Man beta 1, 4 GlcNAc beta 1, 4GlcNAc) was compared to the binding by Man3GlcNAc2, Man5GlcNAc2 and the asialo-triantennary complex oligosaccharide from bovine fetuin. While the fetuin oligosaccharide did not bind, bromelain, zucchini, Man2GlcNAc2 and horseradish peroxidase were retarded (in that order). The alpha 1, 3-fucosylated phospholipase, Man3GlcNAc2 and Man5GlcNAc2 structures were eluted with 15 M alpha -methylmannoside. It is concluded that core alpha 1,3-fucosylation has little or no effect on ConA binding while xylosylation decreases affinity for ConA. In a parallel study comparing the endoglycosidase D (Endo D) sensitivities of Man3GlcNAc2, IgG-derived GlcNAc beta 1, 2Man alpha 1,6(GlcNAc beta 1,2Man alpha 1,3)Man beta 1,4GlcNAc beta 1,4(Fuc alpha 1,6)GlcNAc, the phospholipase Man alpha 1,6(Man alpha 1, 3)Man beta 1, 4GlcNAc beta 1,4(Fuc alpha 1,3)GlcNAc, and horseradish and zucchini pyridylaminated N-linked oligosaccharides, it was found that only the Man3GlcNAc2 structure was cleaved. The IgG structure was sensitive only when beta -hexosaminidase was also present. Thus, in contrast to core alpha 1,6-fucosylated structures, such as those present in mammals, the presence of core alpha 1,3-fucose, as found in structures from plants and insects, and/or beta 1,2-xylose, as found in plants, causes resistance to Endo D.  相似文献   

14.
N-linked glycans of wall-bound exo- β -glucanases from mung bean and barley seedlings, namely Mung-ExoI and Barley-ExoII, were characterized. The N-linked glycans of Mung-ExoI and Barley-ExoII were liberated by gas-phase hydrazinolysis followed by re-N-acetylation. Their structures were determined by two-dimensional sugar-mapping analysis and MALDI-TOF mass spectrometry. N-glycans from both glucanases were of paucimannosidic-type (small complex-type) structures, Man α 1-6(±Man α 1-3)(Xyl β 1-2)Man β 1-4GlcNAc β 1-4(±Fuc α 1-3) GlcNAc, which are known as typical vacuole-type N-glycans. The results suggest that N-glycans of cell-wall glucanase were produced by partial trimming of complex-type N-glycans by exoglycosidases during its transport from Golgi apparatus to cell walls or in the cell walls.  相似文献   

15.
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.  相似文献   

16.
A mammalian N-acetylglucosamine (GlcNAc) transferase I (GnT I)-independent fucosylation pathway is revealed by the use of matrix-assisted laser desorption/ionization (MALDI) and negative-ion nano-electrospray ionization (ESI) mass spectrometry of N-linked glycans from natively folded recombinant glycoproteins, expressed in both human embryonic kidney (HEK) 293S and Chinese hamster ovary (CHO) Lec3.2.8.1 cells deficient in GnT I activity. The biosynthesis of core fucosylated Man5GlcNAc2 glycans was enhanced in CHO Lec3.2.8.1 cells by the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), leading to the increase in core fucosylated Man5GlcNAc2 glycans and the biosynthesis of a novel core fucosylated monoglucosylated oligomannose glycan, Glc1Man7GlcNAc2Fuc. Furthermore, no fucosylated Man9GlcNAc2 glycans were detected following inhibition of alpha-mannosidase I with kifunensine. Thus, core fucosylation is prevented by the presence of terminal alpha1-2 mannoses on the 6-antennae but not the 3-antennae of the trimannosyl core. Fucosylated Man5GlcNAc2 glycans were also detected on recombinant glycoprotein from HEK 293T cells following inhibition of Golgi alpha-mannosidase II with swainsonine. The paucity of fucosylated oligomannose glycans in wild-type mammalian cells is suggested to be due to kinetic properties of the pathway rather than the absence of the appropriate catalytic activity. The presence of the GnT I-independent fucosylation pathway is an important consideration when engineering mammalian glycosylation.  相似文献   

17.
18.
Sulfated N-linked carbohydrate chains in porcine thyroglobulin   总被引:3,自引:0,他引:3  
N-linked carbohydrate chains of porcine thyroglobulin were released by the hydrazinolysis procedure. The resulting mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis, the acidic fractions were further separated by high-performance liquid chromatography on Lichrosorb-NH2, and analyzed by 500-MHz 1H-NMR spectroscopy and, partially, by permethylation analysis. Of the acidic oligosaccharide-alditols, the following sulfated carbohydrate chains could be identified: NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3[(SO3Na----3)Gal beta 1----4GlcNAc beta1----2-Mana alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc-ol and NeuAc alpha 2----6Gal beta 1----4(SO3Na----)0-1 GlcNAc beta 1----2-Man alpha 1----3[NeuAc alpha 2----6Gal beta 1----4(SO3Na----6)1-0GlcNAc beta 1----2Man alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc- ol. The sulfated structural elements for porcine thyroglobulin form novel details of N-linked carbohydrate chains. They contribute to the fine structure of these oligosaccharides and are another type of expression of microheterogeneity.  相似文献   

19.
The primary structural analysis of O- and N-linked carbohydrate chains of the C-1-esterase inhibitor purified from normal serum was carried out by 400-MHz 1H-NMR spectroscopy. C-1-esterase inhibitor protein of a molecular weight of 116,000 daltons contains 24 O-glycans: NeuAc (alpha 2-3) Gal (beta 1-3) GalNAc, 4 N-glycans: NeuAc (alpha 2-6) Gal (beta 1-4) (GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-6) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc and 2 N-glycans: NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-3) [NeuAc (alpha 2-3) Gal (beta 1-4) GlcNAc (beta 1-2) Man (alpha 1-6)] Man (beta 1-4) GlcNAc (beta 1-4) GlcNAc. 30% of the N-glycans are fucosylated.  相似文献   

20.
M Gohlke  U Mach  R Nuck  B Volz  C Fieger  R Tauber  W Reutter 《FEBS letters》1999,450(1-2):111-116
In the present study we show that the H (0) blood group determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1-R is present on N-linked glycans of soluble human L-selectin recombinantly expressed in baby hamster kidney (BHK) cells. The glycans were isolated using complementary HPLC techniques and characterized by a combination of exoglycosidase digestion and mass spectrometry. The linkage of the fucose residues was determined by incubation of the glycans with specific fucosidases. The H blood determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1 was detected for bi-, 2,4 branched tri- and tetraantennary structures. To our knowledge, the proposed oligosaccharide structures represent a new glycosylation motif for recombinant glycoproteins expressed on BHK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号