首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of Caenorhabditis elegans that form dauer-like larvae   总被引:7,自引:0,他引:7  
The development, ultrastructure, and genetics of two mutants that form dauer-like larvae have been characterized. Dauer larva morphogenesis is initiated regardless of environmental stimuli, and it is incomplete or abnormal. The resistance to detergent characteristic of normal dauer larvae is not fully achieved, and the mutants are unable to exit from the dauer-like state of developmental arrest. Mutant life span is not extended beyond the three weeks characteristic of the nondauer life cycle, whereas normal dauer larvae can live for several months. Growth of daf-15(m81)IV, the less dauer-like of the two, is nearly arrested at the second (dauer-specific) molt, but feeding is not completely suppressed. Head shape, cuticle, and intestinal ultrastructure are nondauer, whereas sensory structures (amphid and deirid) and excretory gland morphology are intermediate between that of dauer and nondauer stages. The daf-9(e1406)X mutant is dauer-like in head shape, cuticle, and deirid ultrastructure, intermediate in amphid and inner labial neuron morphology, and nondauer or abnormal in the intestine. Also, the daf-9 mutant exhibits abnormalities in the pharyngeal arcade cell processes and pharyngeal g1 gland. Double mutants carrying both daf-9 and daf-15 are more resistant to detergent than either single mutant. Like the single mutants, they cannot complete morphogenesis, and they are unable to exit from the dauer-like stage. Both daf-9 and daf-15 mutations are epistatic to previously described dauer-defective mutations, indicating that these two genes act late in the pathway leading to the dauer larva. The genetic tests and the mutant ultrastructure suggest that the two genes may affect parallel pathways of morphogenesis.  相似文献   

2.
昆虫病原线虫感染期幼虫恢复发育的研究进展   总被引:3,自引:0,他引:3  
昆虫病原线虫的感染期幼虫(infective juvenile,IJ)是其一生中唯一具有侵染能力和可自由生活于寄主体外的虫态,一般滞育不取食,体外包裹着已经蜕去的第2龄幼虫的表皮,对外界不良环境的耐受能力强,又称为耐受态幼虫(dauer juvenile,DJ),类似于秀丽隐杆线虫Caenorhabditis elegans的耐受态幼虫。在食物信息的诱导下,感染期幼虫脱鞘,释放出共生细菌,恢复取食并继续发育,这个过程称为感染期幼虫的恢复(IJ recovery)。这个过程是发生在寄生性线虫入侵寄主时的发育过程,对于成功寄生是必要的,在线虫的产业化培养中发挥着重要作用,感染期线虫的恢复率及其发育的同步性直接影响了线虫的产量。本文概述了感染期线虫的恢复发育过程,并对诱导感染期线虫恢复发育的食物信号(food signals)、恢复的影响因素及其检测手段进行了综述,同时讨论了未来的研究方向。  相似文献   

3.
为探讨米虾鞣化激素在其蜕皮周期及表皮角质层形成过程中的作用, 采用PCR技术克隆得到了米虾鞣化激素两个亚基基因的开放阅读框(ORF)序列。bursicon-α ORF全长441 bp, 共编码146个氨基酸; bursicon-β ORF全长411 bp, 共编码136个氨基酸。利用实时荧光定量PCR分析米虾整个蜕皮周期中鞣化激素2个亚基基因的表达特征, 结果发现, 鞣化激素bursicon-α和bursicon-β在米虾蜕皮周期的各个阶段的相对表达量存在差异, 在蜕皮前期(D期)相对表达量开始上升, 到D3期时相对表达量最高, 蜕皮期E期相对表达量最低。RNA干扰(RNA interference, RNAi)介导bursicon-α和bursicon-β基因沉默后, 发现米虾的蜕皮周期延长, 表皮角质层明显变薄。结果提示, 鞣化激素(Bursicon)与新形成的外骨骼中角质层的加厚与硬化密切相关, 进而影响蜕皮时间。  相似文献   

4.
C. elegans develops through four larval stages (L1 to L4) separated by molts. The identity of larval stages is mostly determined by stage-specific expression of heterochronic genes, which constitute an intrinsic genetic timer. However, extrinsic cues such as food availability or population density also modulate the developmental timing of C. elegans by mechanisms that remain largely unknown. To investigate a potential role of the nervous system in the temporal regulation of C. elegans development, we pharmacologically manipulated nicotinic neurotransmission, which represents a prominent signaling component in C. elegans nervous system. Exposure to the nicotinic agonist DMPP during post-embryonic development is lethal at the L2/L3 molt. Specifically, it delays cell divisions and differentiation during the L2 stage but does not affect the timing of the molt cycle, hence causing exposure of a defective L3 cuticle to the environment after the L2/L3 molt. Forcing development through a previously uncharacterized L2 diapause resynchronizes these events and suppresses DMPP-induced lethality. Nicotinic acetylcholine receptors (nAChRs) containing the UNC-63 subunit are required, probably in neurons, to trigger the action of DMPP. Using a forward genetic screen, we further demonstrated that the nuclear hormone receptor (NHR) DAF-12 is necessary to implement the developmental effects of DMPP. Therefore, a novel neuroendocrine pathway involving nAChRs and the NHR DAF-12 can control the speed of stage-specific developmental events in C. elegans. Activation of DMPP-sensitive nAChRs during the second larval stage uncouples a molting timer and a developmental timer, thus causing a heterochronic phenotype that is lethal at the subsequent molt.  相似文献   

5.
The onset of molting in all stages of Hemicycliophora arenaria was preceded by the appearance of numerous, discrete globular structures which were termed "molting bodies" because they were present in the hypodermis only during the production of the new cuticle. In all parasitic stages the molt commenced with the separation of the cuticle from the hypodermis from which the new sheath and cuticle were differentiated. Following completion of the new sheath and cuticle most of the old outer covering was apparently absorbed before ecdysis. Electronmicrographs of body wall cross sections in molting L4 male specimens revealed the final molt to be a double molt in which an additional sixth cuticle was produced. Since both a new sheath and cuticle were produced during the molt of each stage, the sheath must be considered as an integral part of the cuticle and not as a residual cuticle or the result of an incomplete additional molt. Molting in Aphelenchus avenae and Hirschmanniella gracilis was less complex and "molting bodies" were not observed. After cuticle separation the hypodermis gave rise to a new trilaminate zone, the future cortex, and (later) the matrix and striated basal layers.  相似文献   

6.
The understanding of the molecular basis of the endocrine control of insect metamorphosis has been hampered by the profound differences in responses of the Lepidoptera and the Diptera to juvenile hormone (JH). In both Manduca and Drosophila, the broad (br) gene is expressed in the epidermis during the formation of the pupa, but not during adult differentiation. Misexpression of BR-Z1 during either a larval or an adult molt of Drosophila suppressed stage-specific cuticle genes and activated pupal cuticle genes, showing that br is a major specifier of the pupal stage. Treatment with a JH mimic at the onset of the adult molt causes br re-expression and the formation of a second pupal cuticle in Manduca, but only in the abdomen of DROSOPHILA: Expression of the BR isoforms during adult development of Drosophila suppressed bristle and hair formation when induced early or redirected cuticle production toward the pupal program when induced late. Expression of BR-Z1 at both of these times mimicked the effect of JH application but, unlike JH, it caused production of a new pupal cuticle on the head and thorax as well as on the abdomen. Consequently, the 'status quo' action of JH on the pupal-adult transformation is mediated by the JH-induced re-expression of BR.  相似文献   

7.
The nematode cuticle is a protective collagenous extracellular matrix that is modified, cross-linked, and processed by a number of key enzymes. This Ecdysozoan-specific structure is synthesized repeatedly and allows growth and development in a linked degradative and biosynthetic process known as molting. A targeted RNA interference screen using a cuticle collagen marker has been employed to identify components of the cuticle biosynthetic pathway. We have characterized an essential peroxidase, MoLT-7 (MLT-7), that is responsible for proper cuticle molting and re-synthesis. MLT-7 is an active, inhibitable peroxidase that is expressed in the cuticle-synthesizing hypodermis coincident with each larval molt. mlt-7 mutants show a range of body morphology defects, most notably molt, dumpy, and early larval stage arrest phenotypes that can all be complemented with a wild type copy of mlt-7. The cuticles of these mutants lacks di-tyrosine cross-links, becomes permeable to dye and accessible to tyrosine iodination, and have aberrant collagen protein expression patterns. Overexpression of MLT-7 causes mutant phenotypes further supporting its proposed enzymatic role. In combination with BLI-3, an H2O2-generating NADPH dual oxidase, MLT-7 is essential for post-embryonic development. Disruption of mlt-7, and particularly bli-3, via RNA interference also causes dramatic changes to the in vivo cross-linking patterns of the cuticle collagens DPY-13 and COL-12. This points toward a functionally cooperative relationship for these two hypodermally expressed proteins that is essential for collagen cross-linking and proper extracellular matrix formation.  相似文献   

8.
The mermithid nematode, Filipjevimermis leipsandra, was successfully cultivated to the preadult stage in Schneider''s Drosophila medium supplemented with 20% fetal bovine serum. Upon transfer to a solid substrate the preadults continued to develop into ovipositing adult females. Four molts were observed. The first molt occurred in the egg. The second occurred after 6-8 days in culture during which the very thin cuticle was shed completely. The third molt occurred after 18-20 days in culture; the cuticle was retained by the third-stage nematode. This stage was considered comparable to the preadult stage that emerges from host larva, Diabrotica spp. The fourth molt occurred within 12 days after the preadult was transferred from the liquid medium to a solid substrate. Adult females began ovipositing viable eggs 1-3 days after the final molt.  相似文献   

9.
1. Ecdysis of infective Haemonchus contortus larvae is effected by the enzymatic degradation of a specialized region of the second molt cuticle containing a biochemically unique polypeptide (mol. wt = 160,000). 2. The 160,000 mol. wt polypeptide and related polypeptides are synthesized at approximately 6 days of larval development. Antigenically similar polypeptides occur in other ruminant trichostrongyles. 3. Cuticle polypeptides digested during ecdysis differ from second molt cuticle collagens in amino acid composition and collagenase sensitivity. However, some antigenic homology between the 160,000 mol. wt polypeptide and cuticle collagens suggests structurally similar regions.  相似文献   

10.
11.
The noncalcified inner branchiostegal cuticle, which lines the branchial chamber, was examined histologically and ultrastructurally over the molt cycle in the blue crab, Callinectes sapidus. In intermolt crabs (stage C4) the epithelium underlying the inner cuticle is cuboidal and has abundant intercellular spaces and a prominent basement membrane. Apolysis occurs at stage D0 and dissolution of the cuticle is accompanied by the formation of numerous lysosomes in the epithelium. During stage D1, cells increase in height, apical mitochondria become more abundant, and the cuticle continues to be resorbed. An epicuticle is formed in early D2, arising from a fusion of small subunits apparently attached to short apical microvilli. Cuticle deposition continues through D2 and is complete by stage D3. By the time cuticle deposition is complete, the epithelium has become extremely columnar and cells are filled with bundles of microtubules. In stage D4, an amorphous electron‐dense core appears in the microtubule‐filled cells, which are attached to the cuticle at their apical end and anchored to their basement membrane at the basal surface. These microtubule‐filled cells persist through ecdysis, stage E, but during stage A1 the cores disappear and some organelles begin to reappear in the cytoplasm. By stage A2, the cells return to the cuboidal morphology seen in intermolt and remain so throughout the remainder of the molt cycle. This new pattern of cuticle deposition resembles that observed in the gills of crustaceans in that the cuticle is uncalcified and there is no postecdysial cuticle formation. However, instead of apolysis being delayed until just before ecdysis, the inner cuticle is formed during the first half of premolt, allowing the epithelial cells time to differentiate into a morphology that provides tensile strength for the stress of ecdysis. These new observations demonstrate that cuticle formation can follow very diverse structural and temporal patterns. In order to integrate and coordinate these diverse patterns, it is suggested that a suite of feedback mechanisms must be present. J. Morphol. 240:267–281, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
We describe for the first time changes in the rate of CO2 release (as a surrogate of metabolic rate) in the terminal larval stage of the insect Rhodnius prolixus following a blood meal and during the molt leading to the adult stage. These data are presented on a whole-animal basis as well as per gram wet and dry weight. We have also used techniques that allow us to describe the rate of release per gram of actual body tissue (i.e., removing the weight of the remaining bloodmeal in the gut and the metabolically inactive portion of the cuticle). While the metabolic rate of the whole animal rises approximately 10-fold in 15 d following feeding, the rate per gram of dry body mass rises only twofold. We use these data to provide insights into the relative contributions of tissue growth and increases in metabolic intensity to the massive increases in metabolic rate observed in these insects following feeding. Our analyses indicate that the majority of nutrient uptake occurs in the first 4 d following feeding. It is well known in this species that day 4 following feeding is the end of a critical period for the insect in determining whether it will proceed to the next molt. Our results indicate that the insects may be able to make this decision based on nutrients already transported into the body. We examined the "down regulation" of metabolism observed in the latter stages of the molt cycle in this insect. We express these changes on both a per animal and per gram basis and demonstrate that this down regulation extends even into the adult stage before feeding. Using a comparison of the allometric relationships of metabolic rate to mass in insects and ticks, we demonstrate that unfed R. prolixus show a marked decrease in metabolic rate compared to other insects, while fed Rhodnius are similar in metabolic rate to other insects. Rhodnius has a markedly higher metabolic rate (as do all insects) than that found in ticks.  相似文献   

13.
14.
Brian  Morton 《Journal of Zoology》1986,208(1):83-98
The discovery, around Galapagos Rift hydrothermal vents, of an unique community of animals dependent upon the chemoautotrophic oxidation of hydrogen sulphide by bacteria, has aroused wide interest. In the gutless pogonophoran Riftia pachyptila. trophosomal symbiotic bacteria are thought to be principally responsible for this unique form of nutrition. Similar symbiotic bacteria have been postulated for the ctenidia of the Rift clam Calyptogena magnifica. Such a mode of nutrition was deemed necessary since Calyptogena was thought not to possess ctenidial food grooves, thereby making normal filter-feeding impossible. This study reports upon the anatomy of a specimen of C. magnifica and demonstrates the presence of narrow ctenidial food grooves and the normal bivalve complement of feeding and digestive organs. Using a variety of general bacterial and DNA specific stains, no evidence of symbiotic intracellular bacteria has been found in the ctenidia (or any other tissues). It is concluded that C. magnifica is principally a filter feeder, albeit with modification for collecting and processing a diet of bacterial cells, with the possibility (as in all bivalves) of direct absorption. High chemoautotrophic activity levels in the ctenidia probably result from entrapment of vent water bacteria collected during filter feeding.  相似文献   

15.
Digging delays expansion after emergence of adult Calliphora. If flies are kept digging for 12 to 14 hr they lose the capacity to expand and, if they are then reared for 10 days, do not develop the normal adult corpus allatum, ovaries, and cuticle. In particular, ultrastructural examination of the resilin tendon of the pleurotergal muscle shows that development is arrested at a stage similar to that in the late pharate adult but the resilin is not cross-linked. It is suggested that bursicon release is irreversibly inhibited in flies that fail to expand normally.  相似文献   

16.
Larval triphenism and the evolution of alternative life-cycles in a microbotrophic nematode: Rhabditis (P.) orbitalis – a larval parasite in the eye orbits of murid rodents Along with the normal third stage larva and the resistant dauerlarva, Rh. orbitalis posesses an infective larva, which is an obligate parasite in the eye orbits of mice and voles. Dauerlarvae as well as infective larvae develop from a common pre-stage («girdle-larva»), determined by the quality of food stored in the intestinal cells. – Dauerlarvae may tolerate desiccation (at room-temperature and -humidity) up to 4 weeks. If stored in tap water (at 6°C), they will survive for some month being able to restore development. – Infective larvae never survive desiccation but can also be stored in tap water at low temperatures. Food uptake from the lachrymal fluid of a host is needed prior to restoring development. The phenomenon involved is referred to as a necessary adaptation to the ecological conditions in the rodents' nests. It is also pointed out to the different strategies of other parasitic nematode species.  相似文献   

17.
The crustacean cuticle is a chitin-based extracellular matrix, produced in general by epidermal cells and ectodermally derived epithelial cells of the digestive tract. Cuticle morphogenesis is an integrative part of embryonic and postembryonic development and it was studied in several groups of crustaceans, but mainly with a focus on one selected aspect of morphogenesis. Early studies were focused mainly on in vivo or histological observations of embryonic or larval molt cycles and more recently, some ultrastructural studies of the cuticle differentiation during development were performed. The aim of this paper is to review data on exoskeletal and gut cuticle formation during embryonic and postembryonic development in crustaceans, obtained in different developmental stages of different species and to bring together and discuss different aspects of cuticle morphogenesis, namely data on the morphology, ultrastructure, composition, connections to muscles and molt cycles in relation to cuticle differentiation. Based on the comparative evaluation of microscopic analyses of cuticle in crustacean embryonic and postembryonic stages, common principles of cuticle morphogenesis during development are discussed. Additional studies are suggested to further clarify this topic and to connect the new knowledge to related fields.  相似文献   

18.
We examined two mutants of D. discoideum which are temperature-sensitive for development. At the nonpermissive temperature one mutant becomes arrested in development during the transition from the finger to the migrating slug. Temperature-shift experiment indicates that the temperature-sensitive period begins at considerably earlier tip-forming stage. The other mutant becomes arrested at the Mexican hat stage and the temperature-sensitive period coinsided with this stage. The analysis of protein synthesis by two-dimensional gels, however, showed specific changes at the nonpermissive temperature at an earlier finger-forming stage.
These results indicate the presence of a control of late development by proteins at early stages.  相似文献   

19.
The Drosophila Dhr78 orphan nuclear receptor has been proposed to play a role in molting of the tracheal cuticle and regulate gene expression during the third larval instar, possibly in response to a novel systemic hormonal signal. Here, we show that there are no essential maternal functions for Dhr78 during development, and that mutants missing both maternal and zygotic Dhr78 function die primarily during second and third instar larval development. We show that defects in the tracheal system can be observed as early as the first instar, manifested as regions of fluid in the dorsal tracheal trunks. In addition, Dhr78 mutant tracheae show a highly penetrant defect in gas filling at the first-to-second instar larval molt. Dhr78 expression in only the tracheal system is sufficient to rescue the lethality of Dhr78 mutants, and selective inactivation of Dhr78 function in the tracheae by targeted RNAi is sufficient to result in tracheal defects. Finally, we see no evidence for widespread activation of the Dhr78 ligand binding domain in third instar larvae using the GAL4-LBD system, arguing against a systemic hormone for the receptor at this stage in development. Taken together, our results indicate that Dhr78 exerts its essential functions during molting of the tracheal cuticle in Drosophila.  相似文献   

20.
Molting is required for progression between larval stages in the life cycle of nematodes. We have identified four mutant alleles of a Caenorhabditis elegans metalloprotease gene, nas-37, that cause incomplete ecdysis. At each molt the cuticle fails to open sufficiently at the anterior end and the partially shed cuticle is dragged behind the animal. The gene is expressed in hypodermal cells 4 hours before ecdysis during all larval stages. The NAS-37 protein accumulates in the anterior cuticle and is shed in the cuticle after ecdysis. This pattern of protein accumulation places NAS-37 in the right place and at the right time to degrade the cuticle to facilitate ecdysis. The nas-37 gene has orthologs in other nematode species, including parasitic nematodes, and they undergo a similar shedding process. For example, Haemonchus contortus molts by digesting a ring of cuticle at the tip of the nose. Incubating Haemonchus larvae in extracted exsheathing fluids causes a refractile ring of digested cuticle to form at the tip of the nose. When Haemonchus cuticles are incubated with purified NAS-37, a similar refractile ring forms. NAS-37 degradation of the Haemonchus cuticle suggests that the metalloproteases and the cuticle substrates involved in exsheathment of parasitic nematodes are conserved in free-living nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号