首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel artemisinin derivatives bearing Mannich base group were prepared and tested for their antimalarial activity. These water-soluble artemisinin derivatives were more stable than sodium artesunate and few compounds were found to be more active against Plasmodium berghei in mice than artesunic acid by oral administration. Two most potent derivatives 17b and 17d were examined for their antimalarial activity against Plasmodium knowlesi in rhesus monkeys.  相似文献   

2.
A series of mono- and di-substituted analogues of isocryptolepine have been synthesized and evaluated for in vitro antimalarial activity against chloroquine sensitive (3D7) and resistant (W2mef) Plasmodium falciparum and for cytotoxicity (3T3 cells). Di-halogenated compounds were the most potent derivatives and 8-bromo-2-chloroisocryptolepine displayed the highest selectivity index (106; the ratio of cytotoxicity (IC(50)=9005 nM) to antimalarial activity (IC(50)=85 nM)). Our evaluation of novel isocryptolepine compounds has demonstrated that di-halogenated derivatives are promising antimalarial lead compounds.  相似文献   

3.
Fosmidomycin is a promising antimalarial drug candidate with a unique chemical structure and a novel mode of action. Chain substituted pivaloyloxymethyl ester derivatives of Fosmidomycin and its acetyl analogue FR900098 have been synthesized and their in vitro antimalarial activity versus the Chloroquine sensitive strain 3D7 of Plasmodium falciparum has been determined.  相似文献   

4.
Ellipticine has been shown previously to exhibit excellent in vitro antiplasmodial activity and in vivo antimalarial properties that are comparable to those of the control drug chloroquine in a mouse malaria model. Ellipticine derivatives and analogs exhibit antimalarial potential however only a few have been studied to date. Herein, ellipticine and a structural analog were isolated from Aspidosperma vargasii bark. A-ring brominated and nitrated ellipticine derivatives exhibit good in vitro inhibition of Plasmodium falciparum K1 and 3D7 strains. Several of the compounds were found not to be toxic to human fetal lung fibroblasts. 9-Nitroellipticine (IC50 = 0.55 μM) exhibits greater antiplasmodial activity than ellipticine. These results are further evidence of the antimalarial potential of ellipticine derivatives.  相似文献   

5.
A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.  相似文献   

6.
7.
(+)-Deoxoartemisitene and its C-11, 13 derivatives were synthesized from artemisinic acid via a short and regiospecific process and several derivatives show 10-20 times more in vitro antimalarial activities against Plasmodium falciparum than artemisinin.  相似文献   

8.
The in vitro antimalarial activity of bis-pyridinium salts, N,N'-hexamethylenebis(4-carbamoyl-1-decylpyridinium bromide) and their derivatives, against the Plasmodium falciparum FCR-3 strain (ATCC 30932, chloroquine-sensitive) was evaluated. All test compounds exhibited antimalarial activity over a concentration range of 3.5microM to 10nM. The chain length of the N1-alkyl moiety was found to be very beneficial in terms of antimalarial activity, and in this series of compounds, the most appropriate N1-alkyl chain length was found to be eight.  相似文献   

9.
We synthesized calothrixin B using our developed biomimetic method and derived N-alkyl-calothrixins A and B. The in vitro antimalarial activity of the calothrixin derivatives, including calothrixins A and B, against the Plasmodium falciparum FCR-3 strain was evaluated. All test compounds exhibited antimalarial activity over a concentration range of 6.4×10(-6)-1.2×10(-7) M.  相似文献   

10.
In man, the two major metabolites of the antimalarial drug chloroquine (CQ) are monodesethylchloroquine (DECQ) and didesethylchloroquine (di-DECQ). By analogy with CQ, the synthesis and the in vitro tests of some amino derivatives of ferrochloroquine (FQ), a ferrocenic analogue of CQ which are presumed to be the oxidative metabolites of FQ, are reported. Desmethylferrochloroquine 1a and didesmethylferrochloroquine 2 would be more potent against schizontocides than CQ in vitro against two strains (HB3 and Dd2) of Plasmodium falciparum. Other secondary amino derivatives have been prepared and proved to be active as antimalarial agents in vitro, too.  相似文献   

11.
Malaria is one of the world's deadliest diseases and is becoming an increasingly serious problem as malaria parasites develop resistance to most of the antimalarial drugs used today. We previously reported the in vitro and in vivo antimalarial potencies of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) and 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Plasmodium falciparum and Plasmodium berghei parasites. To improve water-solubility for synthetic peroxides, a variety of cyclic peroxides having carboxyl functionality was prepared based on the antimalarial candidate, N-251, and their antimalarial activities were determined. The reactions of N-89 and its derivatives with Fe(II) demonstrated a highly efficient formation of the corresponding carbon radical which may be suspected as a key for the antiparasitic activity.  相似文献   

12.
Malaria is one of the most important parasitic diseases, affecting almost half of the world and posing a threat to the other half. Xanthone derivatives can behave as antimalarial drugs in the same mechanistic way as chloroquine and other related quinolines. This action is due to the inhibition of the detoxification pathway of the parasite, responsible for the production of hemozoin. We report a study of the electronic properties of the xanthonic and quinolinic compounds based on DFT calculations, in order to determine a pattern that could be applied to the development of new potentially active antimalarial molecules. As a result, a new interpretation of structure-activity relationship of the quinoline antimalarial drugs, and of the active hydroxylated xanthones is proposed here. We conclude that electronic features rather than steric factors control primarily the inhibitory activity of the studied compounds against hematin aggregation, concurring to a potential antimalarial activity.  相似文献   

13.
Among three series of 1,2,4-trioxane derivatives, five compounds showed good in vitro antimalarial activity, three compounds of which exhibited better activity against P. falciparum resistant (RKL9) strain than the sensitive (3D7) one. Two best compounds were one from aryl series and the other from heteroaryl series with IC50 values of 1.24 µM and 1.24 µM and 1.06 µM and 1.17 µM, against sensitive and resistant strains, respectively. Further, trioxane derivatives exhibited good binding affinity for the P. falciparum cysteine protease falcipain 2 receptor (PDB id: 3BPF) with well defined drug-like and pharmacokinetic properties based on Lipinski’s rule of five with additional physicochemical and ADMET parameters. In view of having antimalarial potential, 1,2,4-trioxane derivative(s) reported herein may be useful as novel antimalarial lead(s) in the discovery and development of future antimalarial drug candidates as P. falciparum falcipain 2 inhibitors against resistant malaria.  相似文献   

14.
Quinomycin A and its derivatives were identified as potent antimalarial (Plasmodium falciparum) agents in a screen of the RIKEN NPDepo chemical library. IC50 values of quinomycin A and UK-63,598 were approximately 100 times lower than that of the antimalarial drug chloroquine. This activity was mitigated by the addition of plasmid DNA, suggesting that these compounds act against parasites by intercalating into their DNA.  相似文献   

15.
Plasmepsin (Plm) is a potential target for new antimalarial drugs, but most reported Plm inhibitors have relatively low antimalarial activities. We synthesized a series of dipeptide-type HIV protease inhibitors, which contain an allophenylnorstatine-dimethylthioproline scaffold to exhibit potent inhibitory activities against Plm II. Their activities against Plasmodium falciparum in the infected erythrocyte assay were largely different from those against the target enzyme. To improve the antimalarial activity of peptidomimetic Plm inhibitors, we attached substituents on a structure of the highly potent Plm inhibitor KNI-10006. Among the derivatives, we identified alkylamino compounds such as 44 (KNI-10283) and 47 (KNI-10538) with more than 15-fold enhanced antimalarial activity, to the sub-micromolar level, maintaining their potent Plm II inhibitory activity and low cytotoxicity. These results suggest that auxiliary substituents on a specific basic group contribute to deliver the inhibitors to the target Plm.  相似文献   

16.
The synthesis of novel 10-deoxoartemisinin derivatives containing heterocyclic rings and hydrophilic groups, and their antimalarial activity assessment are described. Most of the synthesized derivatives are more potent than artemisinin, especially, some of them are 20-25 times more potent than artemisinin to two chloroquine-resistant and sensitive clones of P. falciparum.  相似文献   

17.
A series of new benzenesulfonamides, most of which are chiral, incorporating 1, 3, 4-oxadiazole and amino acid moieties have been synthesized. Some of these compounds were screened for antimalarial activity and also evaluated for their ability to inhibit hem polymerization. The electrophoretic analysis indicated that one compound was effective in inhibiting the degradation of hemoglobin. The synthesized compounds were tested in mice infected with Plasmodium berghei. These derivatives have the potential for the development of novel antimalarial lead compounds.  相似文献   

18.
The cyclin dependent protein kinases, Pfmrk and PfPK5, most likely play an essential role in cell cycle control and differentiation in Plasmodium falciparum and are thus an attractive target for antimalarial drug development. Various 1,3-diaryl-2-propenones (chalcone derivatives) which selectivity inhibit Pfmrk in the low micromolar range (over PfPK5) are identified. Molecular modeling shows a pair of amino acid residues within the Pfmrk active site which appear to confer this selectivity. Predicted interactions between the chalcones and Pfmrk correlate well with observed potency. Pfmrk inhibition and activity against the parasite in vitro correlate weakly. Several mechanisms of action have been suggested for chalcone derivatives and our study suggests that kinase inhibition may be an additional mechanism of antimalarial activity for this class of compounds.  相似文献   

19.
In vivo antimalarial drug candidates screening test was carried out on a series of water-soluble 3,7-bis(dialkylamino)phenoxazin-5-ium derivatives. Among them, 3-(diethylamino)-7-(piperidin-1-yl)phenoxazin-5-ium chloride (SSJ-206) showing highest efficacy was chosen for further pharmcodynamics and pharmacokinetics study. It was supported from these data that the phenoxazinium salts, SSJ-206, would be one of hopeful candidates as an oral antimalarial drug.  相似文献   

20.
In an attempt to search for new and alternative antimalarial agents, a series of unsubstituted and 6-trifluoromethyl-1,2,4-triazino[5,6b]indole and 5H-1,2,4-triazolo[1',5',2,3]-1,2,4-triazino[5,6b]indole derivatives were synthesized and their chemical structures confirmed by 1H NMR and 13C NMR, elemental, IR and mass spectrophotometric analyses. The in vitro antimalarial activities of these compounds were evaluated against the chloroquine-sensitive (D10) and the chloroquine-resistant (RSA11) strains of Plasmodium falciparum. The 1,2,4-triazino[5,6b]indole derivatives (4, 6 and 8) with a trifluoromethyl group at position 6 exhibit increased in vitro activity when compared to the unsubstituted analogues, which are all devoid of activity. The presence of the trifluoromethyl group in the 5H-1,2,4-triazolo[1',5',2,3]-1,2,4-triazino[5,6b]indole ring system leads to compounds with diminished antimalarial activity when compared to the corresponding unsubstituted analogues. The compounds associate with ferriprotoporphyrin IX and interact with DNA to more or less the same extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号