首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAI are all involved in repressing AtEXP2 expression, and RGL1 plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis.  相似文献   

3.
We explore the roles of gibberellin (GA) signaling genes SLEEPY1 (SLY1) and RGA-LIKE2 (RGL2) in regulation of seed germination in Arabidopsis thaliana, a plant in which the hormone GA is required for seed germination. Seed germination failure in the GA biosynthesis mutant ga1-3 is rescued by GA and by mutations in the DELLA gene RGL2, suggesting that RGL2 represses seed germination. RGL2 protein disappears before wild-type seed germination, consistent with the model that GA stimulates germination by causing the SCF(SLY1) E3 ubiquitin ligase complex to trigger ubiquitination and destruction of RGL2. Unlike ga1-3, the GA-insensitive sly1 mutants show variable seed dormancy. Seed lots with high seed dormancy after-ripened slowly, with stronger alleles requiring more time. We expected that if RGL2 negatively controls seed germination, sly1 mutant seeds that germinate well should accumulate lower RGL2 levels than those failing to germinate. Surprisingly, RGL2 accumulated at high levels even in after-ripened sly1 mutant seeds with 100% germination, suggesting that RGL2 disappearance is not a prerequisite for seed germination in the sly1 background. Without GA, several GA-induced genes show increased accumulation in sly1 seeds compared with ga1-3. It is possible that the RGL2 repressor of seed germination is inactivated by after-ripening of sly1 mutant seeds.  相似文献   

4.
5.
Gibberellins (GAs) play a critical role in fruit‐set and fruit growth. Gibberellin is perceived by its nuclear receptors GA INSENSITIVE DWARF1s (GID1s), which then trigger degradation of downstream repressors DELLAs. To understand the role of the three GA receptor genes (GID1A, GID1B and GID1C) in Arabidopsis during fruit initiation, we have examined their temporal and spatial localization, in combination with analysis of mutant phenotypes. Distinct expression patterns are revealed for each GID1: GID1A is expressed throughout the whole pistil, while GID1B is expressed in ovules, and GID1C is expressed in valves. Functional study of gid1 mutant combinations confirms that GID1A plays a major role during fruit‐set and growth, whereas GID1B and GID1C have specific roles in seed development and pod elongation, respectively. Therefore, in ovules, GA perception is mediated by GID1A and GID1B, while GID1A and GID1C are involved in GA perception in valves. To identify tissue‐specific interactions between GID1s and DELLAs, we analyzed spatial expression patterns of four DELLA genes that have a role in fruit initiation (GAI, RGA, RGL1 and RGL2). Our data suggest that GID1A can interact with RGA and GAI in all tissues, whereas GID1C–RGL1 and GID1B–RGL2 interactions only occur in valves and ovules, respectively. These results uncover specific functions of each GID1–DELLA in the different GA‐dependent processes that occur upon fruit‐set. In addition, the distribution of GA receptors in valves along with lack of expression of GA biosynthesis genes in this tissue, strongly suggests transport of GAs from the developing seeds to promote fruit growth.  相似文献   

6.
Gibberellin (GA) is a classical plant hormone involved in many aspects of plant growth and development. A family of five homologs called the DELLA proteins, comprised of GAI, RGA, RGL1, RGL2 and RGL3, were recently found to act as critical GA signal mediators in Arabidopsis. Reports have shown that GAI and RGA are coupled together to repress stem elongation growth whereas RGL2 is a major negative regulator of seed germination. GA down-regulates DELLA proteins through protein degradation likely via the proteasome pathway. The conserved and functionally important DELLA domain is responsible for protein stability in response to GA.  相似文献   

7.
Arabidopsis RGL1 encodes a negative regulator of gibberellin responses   总被引:20,自引:0,他引:20       下载免费PDF全文
Wen CK  Chang C 《The Plant cell》2002,14(1):87-100
  相似文献   

8.
9.
Under favorable moisture, temperature, and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGA-LIKE 2 (RGL2), a major repressor of germination in Arabidopsis (Arabidopsis thaliana) seeds. Analysis of seed germination phenotypes of constitutive photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacted directly with RGL2, and in vivo this interaction was strongly enhanced by SUPPRESSOR OF PHYA-105 1. COP1 directly ubiquitinated RGL2 to promote its degradation. Moreover, GA stabilized COP1 with consequent RGL2 destabilization. By uncovering this COP1–RGL2 regulatory module, we reveal a mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.

A master regulator of photomorphogenesis positively regulates germination in Arabidopsis seeds by directly ubiquitinating and promoting the degradation of a key repressor of seed germination.  相似文献   

10.
Bethke PC  Gubler F  Jacobsen JV  Jones RL 《Planta》2004,219(5):847-855
Seeds of Arabidopsis thaliana (L.) Heynh. and grains of barley (Hordeum vulgare L.) were used to characterize the affects of nitric oxide (NO) on seed dormancy. Seeds of the C24 and Col-1 ecotypes of Arabidopsis are almost completely dormant when freshly harvested, but dormancy was broken by stratification for 3 days at 4°C or by imbibition of seeds with the NO donor sodium nitroprusside (SNP). This effect of SNP on dormancy of Arabidopsis seeds was concentration dependent. SNP concentrations as low as 25 M reduced dormancy and stimulated germination, but SNP at 250 M or more impaired seedling development, including root growth, and inhibited germination. Dormancy was also reduced when Arabidopsis seeds were exposed to gasses that are generated by solutions of SNP. Nitrate and nitrite, two other oxides of nitrogen, reduced the dormancy of Arabidopsis seeds, but much higher concentrations of these were required compared to SNP. Furthermore, the kinetics of germination were slower for seeds imbibed with either nitrate or nitrite than for seeds imbibed with SNP. Although seeds imbibed with SNP had reduced dormancy, seeds imbibed with SNP and abscisic acid (ABA) remained strongly dormant. This may indicate that the effects of ABA action on germination are downstream of NO action. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide (cPTIO) strengthened dormancy of unstratified and briefly stratified Arabidopsis seeds. Dormancy of three cultivars of barley was also reduced by SNP. Furthermore, dormancy in barley grain was strengthened by imbibition of grain with cPTIO. The data presented here support the conclusion that NO is a potent dormancy breaking agent for seeds and grains. Experiments with the NO scavenger suggest that NO is an endogenous regulator of seed dormancy.Abbreviations ABA Abscisic acid - cPTIO 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide - GA Gibberellin - SNP Sodium nitroprusside - NOx Gaseous oxides of nitrogen  相似文献   

11.
12.
Flixweed is one of the most abundant weeds in North America and China, and causes a reduction in crop yields. Dormancy of flixweed seeds is deep at maturity and is maintained in soil for several months. To identify regulators of seed dormancy and germination of flixweed, the effect of environmental and hormonal signals were examined using dormant and non-dormant seeds. The level of dormancy was decreased during after-ripening and stratification, but long imbibition (over 5 days) at 4 °C in the dark resulted in the introduction of secondary dormancy. The strict requirement of duration of cold treatment for the break of dormancy may play a role in the seasonal regulation of germination. The germination of non-dormant flixweed seeds was critically regulated by red (R) and far-red (FR) light in a photoreversible manner. Sodium nitroprusside, a donor of nitric oxide (NO), promoted germination of half-dormant seeds, suggesting that NO reduced the level of seed dormancy. As has been shown in other related species, light elevated sensitivity to GA4 in dark-imbibied flixweed seeds, but cold treatment did not affect GA4-sensitivity unlike in Arabidopsis. Taken together, our results indicate that seed germination in flixweed and its close relative Arabidopsis is controlled by similar as well as distinct mechanisms in response to various endogenous and environmental signals.  相似文献   

13.
The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with an essential role in the development of higher eukaryotes. CSN deconjugates the ubiquitin-related modifier NEDD8 from the cullin subunit of cullin-RING type E3 ubiquitin ligases (CRLs), and CSN-mediated cullin deneddylation is required for full CRL activity. Although several plant E3 CRL functions have been shown to be compromised in Arabidopsis csn mutants, none of these functions have so far been shown to limit growth in these mutants. Here, we examine the role of CSN in the context of the E3 ubiquitin ligase SCFSLEEPY1 (SLY1), which promotes gibberellic acid (GA)-dependent responses in Arabidopsis thaliana. We show that csn mutants are impaired in GA- and SCFSLY1-dependent germination and elongation growth, and we show that these defects correlate with an accumulation and reduced turnover of an SCFSLY1-degradation target, the DELLA protein REPRESSOR-OF-ga1-3 (RGA). Genetic interaction studies between csn mutants and loss-of-function alleles of RGA and its functional homologue GIBBERELLIC ACID INSENSITIVE (GAI) further reveal that RGA and GAI repress defects of germination in strong csn mutants. In addition, we find that these two DELLA proteins are largely responsible for the elongation defects of a weak csn5 mutant allele. We thus conclude that an impairment of SCFSLY1 is at least in part causative for the germination and elongation defects of csn mutants, and suggest that DELLA proteins are major growth repressors in these mutants.  相似文献   

14.
Aim of this study was to investigate the nature of dormancy in black henbane (Hyoscyamus niger) seeds which have low germination rate under normal laboratory conditions. To do this, before placing the seeds in Petri dishes, they were soaked in 5,10 and 15 mg/L GA; 1,2 and 3% H2SO4, 15 mg/L GA + 1% H2SO4, 0.01 M KNO3 solutions, tap water, 40, 50 and 60°C hot water for 30 min. The study was performed under both continuous illumination and darkness in growth chambers to evaluate the effect of light on germination rate. The results showed that H2SO4 and GA treatments were the most important factors affecting seed germination and their germination enhancing effects were more evident in darkness. The results also suggested that black henbane seeds exhibit double dormancy involving a hard seed coat and a partially dormant embryo and have a partial dark requirement to germinate.  相似文献   

15.
Plant seeds sometimes do not germinate at elevated temperature. The thermoinhibition mechanisms of seed germination have yet not revealed. Here we describe a chemical approach to improve seed germination at high temperature. We compared the temperature response of germination between wild-type Arabidopsis thaliana and its T-DNA insertion mutant ΔAtGLB3 that lacks a functional gene encoding GLB3, a homologue of bacterial truncated Hb (trHb). Under optimal temperature conditions (e.g. 22°C), the seeds of ΔAtGLB3 and the wild type germinated at a frequency near 100%. In contrast, at 32°C the seeds of ΔAtGLB3 did not germinate while wild-type seeds retained the same high germination frequency. The germination of ΔAtGLB3 at 32°C was partially restored by supplementation with the nitric oxide-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO; cPTIO), 3-(3,4-dihydroxycinnamoyl)quinic acid, bovine serum Hb, or isoprene. The results presented in this study suggest that chemical scavengers for reactive nitrogen species potentially improve seed germination at high temperature.  相似文献   

16.
模拟水分胁迫对不同种源麻楝种子萌发能力的影响   总被引:3,自引:0,他引:3  
以麻楝6个种源种子为试验材料,用不同浓度的聚乙二醇(PEG)溶液模拟干旱胁迫,探讨干旱胁迫对种子发芽率、发芽势、发芽指数、活力指数以及幼苗苗高和胚根长及根苗比的影响,为麻楝的引种和推广种植提供依据。结果显示:(1)不同水势胁迫处理均降低了麻楝种子的发芽率和发芽势,当水势为-0.40MPa时延缓了种子萌发进程;种子的发芽率、发芽势、发芽指数和活力指数均随干旱胁迫强度的增加呈明显下降的趋势;当胁迫水势为-0.86MPa时,干旱胁迫处理的种子在试验结束时仍未能萌发,即-0.86MPa是麻楝种子萌发的临界水势。(2)当胁迫水势高于-0.40MPa时,麻楝幼苗的胚根长度与对照组差异不显著且长于对照组,说明高于-0.40MPa的水势有利于麻楝种子胚根的生长;麻楝幼苗苗高生长则是随着PEG浓度的升高而逐渐减缓。(3)适当的干旱胁迫可以增大各种源麻楝幼苗根苗比,且在胁迫水势高于-0.20MPa时都达到最大值。研究表明,麻楝种子具有一定的抗干旱胁迫的萌发能力,并以来自缅甸的Khin Aye Pale和泰国的Phu Wiang材料较强,来源于中国三亚和马来西亚Ulu Tranan的较弱。  相似文献   

17.
In order to investigate the interaction of the plant hormones ethylene, abscisic acid (ABA) and cytokinin in seed germination and early seedling development, we studied germination in ethylene-related mutants of Arabidopsis. Mutations in the genes etr1 and ein2, which reduce ethylene responses, showed increased dormancy and a delay in germination in comparison with wild type. Mutations in etr1, ein2 and ein6 also resulted in increased sensitivity to ABA with respect to inhibition of germination. Conversely, mutations in ctr1 and eto3, which lead to an increased ethylene response and overproduction of ethylene, respectively, decreased sensitivity to ABA during germination. Increased ABA sensitivity was also effected in wild type seeds by the presence during germination of AgNO3, an inhibitor of ethylene action. The addition of the cytokinin N-6 benzyl adenine (BA) reversed the increased sensitivity of ethylene-resistant mutants to ABA. The action of cytokinin in reversing increased ABA sensitivity of ethylene-resistant mutants also suggests that at least part of the action of cytokinin in promoting germination is independent of its role in stimulating ethylene production. These observations further extend the evidence in support of interaction between ethylene, ABA and cytokinin signalling in controlling seed germination and early seedling development in Arabidopsis.  相似文献   

18.
19.
Walz A  Seidel C  Rusak G  Park S  Cohen JD  Ludwig-Müller J 《Planta》2008,227(5):1047-1061
The seed protein IAP1 from bean (PvIAP1; Phaseolus vulgaris L.) that is modified by the phytohormone indole-3-acetic acid (IAA) was heterologously expressed in the two reference plant species Arabidopsis thaliana and Medicago truncatula. For the transformation of Medicago we devised a novel protocol using seedling infiltration. When PvIAP1 was overexpressed under the control of the constitutive 35SCaMV promoter in Arabidopsis, the plants showed signs of earlier bolting and enhanced branching. Expression of a fusion protein of PvIAP1 with both a green fluorescence protein (GFP) as reporter and 6× histidine (His) tag under the control of the native bean IAP1 promoter resulted in the accumulation of the protein in both plant species exclusively in seeds as shown by immunoblotting and by fluorescence microscopy. During seed development, PvIAP1 was first expressed in the vascular bundle of Arabidopsis, whereas in later stages GFP fluorescence was visible essentially in all tissues of the seed. Fluorescence decreased rapidly after imbibition in the seeds for both Arabidopsis and Medicago, although the fluorescence persisted longer in Arabidopsis. GFP fluorescence was distributed evenly between an organelle fraction, the microsomal membrane fraction, and the cytosol. This was also confirmed by immunoblot analysis. Clusters of higher GFP fluorescence were observed by confocal microscopy. Although PvIAP1 protein accumulated in seeds of both Arabidopsis and Medicago, neither species post-translationally modified the protein with an indoleacyl moiety as shown by quantitative GC–MS analysis after alkaline hydrolysis. These results indicate an apparent specificity for IAA attachment in different plant species. Alexander Walz and Claudia Seidel contributed equally to the paper.  相似文献   

20.
The germination characteristics of a population of the winter annual Phacelia dubia (L.) Trel. var. dubia from the middle Tennessee cedar glades were investigated in an attempt to define the factor(s) regulating germination in nature. Factors considered were changes in physiological response of the seeds (after-ripening), temperature, age, light and darkness, and soil moisture. At seed dispersal (late May to early June), approximately 50 % of the seeds were non-dormant but, would germinate only at low temperatures (10–15 C). As the seeds aged from June to September, there was an increase in rate and total percent of germination at 10, 15, and 20 C, and the maximum temperature for germination increased to 25 C. Little or no germination occurred at the June, July, and August temperatures in 0- to 2-month-old seeds, even in seeds on soil that was kept continuously moist during this 3-month period. At the September, October, and November temperatures 3- to 5-month-old seeds germinated to high percentages. In all experiments seeds germinated better at a 14-hr photoperiod than in constant darkness. Inability of 0- to 2-month-old seeds to germinate at high summer temperatures allows P. dubia dubia to pass the dry summer in the seed stage, while increase in optimum and maximum temperatures for germination during the summer permits seeds to germinate in late summer and early fall when conditions are favorable for seedling survival and eventual maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号