首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrochelatase of spinach chloroplasts   总被引:10,自引:5,他引:5       下载免费PDF全文
Spinach chloroplasts catalyse the incorporation of Fe(2+) into protoporphyrin, mesoporphyrin and deuteroporphyrin to form the corresponding haems. This ferrochelatase activity was detected by pyridine haemochrome formation with acetone-dried powders of chloroplasts, or from the formation of [(59)Fe]haems by intact chloroplasts. Decreasing the mitochondrial contamination of the chloroplasts by density-gradient centrifugation did not cause any loss of activity: spinach ferrochelatase appears to be principally a chloroplast enzyme. The characteristics of the enzyme were examined by using [(59)Fe]haem assay. The activity was pH-dependent: for both mesohaem and protohaem formation there were two pH maxima, a major peak at about pH7.8 and a smaller peak at about pH9.2. Lineweaver-Burk plots showed that the K(m) for Fe(2+) incorporation into protoporphyrin was 8mum and that for Fe(2+) incorporation into mesoporphyrin was 36mum. At non-saturating Fe(2+) concentrations the K(m) for protoporphyrin was 0.2mum and that for mesoporphyrin was 0.4mum. Ferrochelatase was not solubilized by treatment of chloroplasts with ultrasound but was solubilized by stirring in 1% (w/v) Tween 20 at pH10.4. Unlike the rat liver mitochondrial enzyme, chloroplast ferrochelatase was not stimulated by treatment with selected organic solvents. The spinach enzyme was inactive in aerobic conditions and it was shown by using an oxygen electrode that under such conditions the addition of Fe(2+) to buffer solutions caused a rapid uptake of dissolved oxygen, believed to be due to the oxidation of Fe(2+) to Fe(3+); Fe(3+) is not a substrate for ferrochelatase.  相似文献   

2.
Lipoxygenases contain a unique nonheme iron cofactor with a redox role in the catalyzed reaction. The conditions for the extraction of the metal atom were investigated for one of the soybean lipoxygenase isoenzymes. Removal of the iron by o-phenanthroline was attained in the presence of substrate under anaerobic conditions, but the apoenzyme could not be isolated and reconstituted. The freshly regenerated sodium form of Chelex-100 also removes the iron atom from native soybean lipoxygenase 3, but only in sodium bicarbonate buffer at pH 8.0. The soluble but inactive apoenzyme was reconstituted with ferric ammonium sulfate in Tris--HCl buffer at pH 7.0. Stoichiometric iron in the reconstituted enzyme was established using inductively coupled plasma-atomic emission spectroscopy. The reconstituted enzyme contained 90 +/- 10% of the specific activity of the native enzyme. The native configuration of the reconstituted iron site was confirmed by electron paramagnetic resonance spectroscopy.  相似文献   

3.
A previously unreported endoRNase present in the spheroplast fraction of Escherichia coli degraded homoribopolymers and small RNA oligonucleotides but not polymer RNA. Like the periplasmic endoRNase, RNase I, the enzyme cleaved the phosphodiester bond between any nucleotides; however, RNase I degraded polymer RNA as fast as homopolymers or oligomers. Both enzymes migrated as 27-kDa polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and could not be separated by various chromatographic procedures. In rna insertion mutants, both enzymes were completely missing; the spheroplast enzyme is called RNase I*, since it must be a form of RNase I. The two forms could be distinguished by physical treatments. RNase I could be activated by Zn2+, while RNase I* was inactive in the presence of Zn2+. RNase I was inactivated very slowly at 100 degrees C over a wide pH range, while RNase I* was inactivated slowly by heat at pH 4.0 but much more rapidly as the pH was increased to 8.0. In the presence of a thiol-binding agent, the inactivation at the higher pH values was much slower. These results suggest that RNase I*, but not RNase I, has free sulfhydryl groups. RNase I* activity in the cell against a common substrate was estimated to be several times that of RNase I. All four 2',3'-phosphomonoribonucleotides were identified in the soluble pools of growing cells. Such degradative products must arise from RNase I* activity. The activity would be suited for the terminal step in mRNA degradation, the elimination of the final oligonucleotide fragments, without jeopardizing the cell RNA. An enzyme with very similar specificity was found in Saccharomyces cerevisiae, suggesting that the activity may be widespread in nature.  相似文献   

4.
An optimized in vitro assay of 3'-phosphoadenylysulfate:galactosylceramide 3'-sulfotransferase (EC 2.8.2.11, galactosylceramide sulfotransferase, formerly known as galactocerebroside sulfotransferase) activity is presented, that can be used in crude homogenate of brain tissue of various developmental stages. The enzyme activity is determined by measuring the [35S]sulfatides formed by the enzymic transfer of [35S]sulfate from 3'-phosphoadenoside 5'-phospho [35S]sulfate to galactosylceramides. The sulfatide formation at 30 degrees C is linear up to 30 min and up to a protein concentration of 1 mg per 0.5 ml assay volume. The presence of 0.4% Triton X-100 and 50 micrometer exogenous bovine cerebrosides are optimal for enzyme activity. The pH optimum of the reaction is at pH 6.5 using 0.1 M imidazole buffer. The enzyme reaction is stimulated by NaCl, KCl, MgCl2, CaCl2, MnCl2, ATP and inhibited by ADP. The developmental enzyme activity pattern of mouse brain is the same, if derived from homogenates and microsomes, respectively, under our assay conditions.  相似文献   

5.
Crystalline Klebsiella aerogenes urease was found to have less than 0.05% of the activity observed for the soluble enzyme under standard assay conditions. Li2SO4, present in the crystal storage buffer at 2 M concentration, was shown to inhibit soluble urease by a mixed inhibition mechanism (Ki's of 0.38 +/- 0.05 M for the free enzyme and 0.13 +/- 0.02 M for the enzyme-urea complex). However, the activity of crystals was less than 0.5% of the expected value, suggesting that salt inhibition does not account for the near absence of crystalline activity. Dissolution of crystals resulted in approximately 43% recovery of the soluble enzyme activity, demonstrating that protein denaturation during crystal growth does not cause the dramatic diminishment in the catalytic rate. Finally, crushed crystals exhibited only a three-fold increase in activity over that of intact crystals, indicating that the rate of substrate diffusion into the crystals does not significantly limit the enzyme activity. We conclude that urease is effectively inactive in this crystal form, possibly due to conformational restrictions associated with a lid covering the active site, and propose that the small amounts of activity observed arise from limited enzyme activity at the crystal surfaces or trace levels of enzyme dissolution into the crystal storage buffer.  相似文献   

6.
The specific activity and/or the allosteric behavior of rabbit muscle phosphofructokinase is dependent on several factors including (1) the method of assay, and (2) the concentration, pH, and temperature of the enzyme solution from which dilution is made into the assay mixture. These observations suggest that quantitative interpretation of the allosteric characteristics of this enzyme may be in error because of lack of control of any or all of these factors. In some buffer systems, such as imidazole at pH 7, instability of the enzyme in the assay leads to further complications in the interpretation of previous studies.The results of the present paper show that under specific conditions it is possible to obtain allosteric kinetic data from which quantitative interpretations can be made. This is best accomplished by performing experiments in phosphate buffer and coupling the reaction through pyruvate kinase and lactic dehydrogenase. The experiments must be carried out either in the presence of excess fructose 1,6-bisphosphate or fructose diphosphatase in order to control the level of the activator fructose 1,6-bisphosphate. Under such conditions, the allosteric kinetic behavior observed at pH 6.5 does not appear to be a consequence of polymerization between an active (four subunit) and inactive (two subunit) form of the enzyme, but is inherent in the active form.  相似文献   

7.
A temperature-dependent conformational change of the active DPN-linked isocitrate dehydrogenase was observed. When initial reaction kinetic data were examined between 35 and 5 degrees, the Hill number (n) varied from 2 at higher to n approaching unity at lower temperatures, with an inflection point at 17 degrees. The presence of manganous isocitrate in the incubation media shifted the transition temperature for enzyme inactivation by 5,5'-dithiobis(2-nitrobenzoate) from 8-16 degrees. These temperature-dependent transitions were paralleled by progressive changes in sedimentation velocities from s20, w of 10.4 at 25 degrees to 7.3 at 10 degrees as measured by active band centrifugation. The linear Arrhenius plot for apparent V max and the constancy of S0.5 for the substrate manganous isocitrate between 35 and 5 degrees suggest that this temperature-dependent conformational change may not be solely related to manganous isocitrate. Further indications of equilibria between different species of enzyme in solution and effects of substrates and cofactors on conformation came from studies of specific activity of enzyme diluted into buffers at 3 and 25 degrees. Dilution to concentrations between 10 and 25 mum enzyme resulted in relatively rapid protein concentration-dependent inactivation which could be prevented and fully reversed by manganous isocitrate. No further substantial inactivation was found subsequent to this phase at 25 degrees. Lowering the temperature of the dilution buffer to 3 degrees favored formation of enzyme species exhibiting a further time and pH-dependent loss of activity which became independent of protein concentration below 7 mum enzyme. The rate of cold inactivation was reduced by raising the ionic strength of the buffer and its progress could be arrested by manganous isocitrate; however, the substrate did not restore the original activity.  相似文献   

8.
1. Two new assay methods were developed for the lens proteinase. In both, the substrate was alpha2-crystallin (a major lens protein); in the first method, the products were detected by reaction with trinitrobenzenesulphonate in the presence of SO32-, whereas in the second method, 3H-labelled substrate was used, and the products were detected as radioactivity soluble in trichloroacetic acid. 2. The neutral proteinase from bovine lens was partially purified by extraction of the lens at pH5.0 and column chromatography on hydroxyapatite and Sepharose 6B gel. 3. The purified enzyme had no detectable activity against haemoglobin, azo-casein or gamma-crystallin under optimum conditions for alpha2-crystallin. 4. The enzyme showed greatest activity and stability at pH7.5. It was reversibly inhibited by EDTA and 1,10-phenanthroline, and activated by Ca2+ and Mg2+. 5. Molecular weights obtained for the enzyme by chromatography on Sepharose 6B were approx. 500,000 in buffer of I = 0.02, and 250,000 at I = 1.02. 6. The properties of the purified lens proteinase are such as to suggest that this enzyme could account for the entire endopeptidase activity of the lens.  相似文献   

9.
Deoxyhypusine formation on the 18 kDa eIF-4D precursor is due to a covalent linkage between a lysine residue of the protein and the aminobutyl moiety derived from spermidine. The deoxyhypusine is then hydroxylated to form hypusine. This post-translational modification represents one of the most specific spermidine-dependent biochemical events in eukaryotic cells. Deoxyhypusine formation can be performed in vitro at pH 9.5 and is greatly stimulated by NAD+. Using the labeling of the 18 kDa protein by [3H]spermidine as an assay for deoxyhypusine formation, we found that (i) significant deoxyhypusine formation can be demonstrated in vitro at pH 7.2 only if NAD+ is present, (ii) deoxyhypusine formation was sensitive to buffer composition; buffers made of basic amino acids and Tris were inhibitory, (iii) sulfhydryl reagents and metal ions such as Cu2+ and Fe3+ were potent inhibitors of deoxyhypusine formation and (iv) the 18 kDa protein substrate was heat-stable. The in vitro activity of deoxyhypusine formation, which depends on the presence of both enzyme and protein substrate, can be separated from the product, eIF-4D, by a one-step Cibacron blue dye affinity column. Taking advantage of this finding, we have developed a simple procedure, based on the use of Cibacron blue dye, for partially purifying both the deoxyhypusine-forming enzyme and the 18 kDa protein substrate. When the partially purified enzyme and protein substrate were mixed in the presence of 1 mM NAD+ and [3H]spermidine, the 18 kDa protein was radiolabeled, no labeling could be detected if any one component was absent. Using partially purified enzyme, we have also determined the half-life of the protein substrate in alpha-difluoromethyl ornithine (DFMO)-treated NB-15 cells and found it to be longer than 10 h.  相似文献   

10.
The pigeon liver fatty acid synthetase complex (14 S) is dissociated in low ionic strength buffer containing dithiothreitol to form a half-molecular weight subunits (9 S) which are completely inactive for the synthesis of saturated fatty acids. The dithiothreitol-protected (reduced) subunits are rapidly reassociated and reactivated to form the active enzyme complex, not only by an increase in salt concentration but also by micromolar concentrations of NADP+ or NADPH. Increases in KCl or NADPH concentration result in an increase in the extent of reactivation (equilibrium) with no change in the over-all rate of the reaction or the half-life ofreactivation of the enzyme. The extent (equilibrium) of reactivation of the enzyme is the same in 0.2 M potassium phosphate buffer, pH 7.0; 0.2 M KCl in 5 mM Tris-35 mM glycine buffer, PH 8.3; and 50 muM NADP+ or NADPH in the Tris-glycine buffer. The extent and rate of reactivation of the enzyme is dependent not only on ionic strength and NADPH concentration, but also on pH and temperature. Reactivation with 0.2 M KCl is optimal between pH 7.3 and 8.5. At higher and lower pH values the rate and extent of reactivation are lowered. The rate and extent of reactivation are also decreased as the temperature is lowered below 10 degrees. At 0 degrees there is little reactivation of enzyme activity. However, in the presence of 0.2 M KCl containing 15 to 40% glycerol at 0 degrees, reactivation of the enzyme is about 50% complete. The rate of reactivation of enzyme in the presence of KCl or NADPH conforms to first order kinetics. This result suggests that the subunits first combine to form an inactive complex which is subsequently transformed to an enzymatically active complex. Evidence for the presence of inactive complex was obtained in experiments carried out in 0.2 M KCl at pH 6.0, and in 0.2 M KCl at pH 8.3, at both 6 and 3 degrees. Under these conditions the amount of complex observed upon ultracentrifugation was greater than expected from determinations of enzyme activity. The above findings suggest that ionic and hydrophobic interactions, and possibly the water structure surrounding the interacting sites, are of prime importance in reassociation and reactivation of enzyme. In addition, NADP+ and NADPH have very specific effects in bringing about reassociation and in maintaining the structural integrity of the multienzyme complex.  相似文献   

11.
A novel dehydratase that catalyzes the stoichiometric dehydration of Z-phenylacetaldoxime to phenylacetonitrile has been purified 483-fold to homogeneity from a cell-free extract of Bacillus sp. strain OxB-1 isolated from soil. It has a M(r) of about 40 000 and is composed of a single polypeptide chain with a loosely bound protoheme IX. The enzyme is inactive unless FMN is added to the assay, but low activity is also observed when sulfite replaces FMN. The activity in the presence of FMN is enhanced 5-fold under anaerobic conditions compared to the activity measured in air. The enzyme has maximum activity at pH 7.0 and 30 degrees C, and it is stable at up to 45 degrees C at around neutral pH. The aerobically measured activity in the presence of FMN is also enhanced by Fe(2+), Sn(2+), SO(3)(2)(-), and NaN(3). Metal-chelating reagents, carbonyl reagents, electron donors, and ferri- and ferrocyanides strongly inhibit the enzyme with K(i) values in the micromolar range. The enzyme is active with arylalkylaldoximes and to a lesser extent with alkylaldoximes. The enzyme prefers the Z-form of phenylacetaldoxime over its E-isomer. On the basis of its substrate specificity, the enzyme has been tentatively named phenylacetaldoxime dehydratase. The gene coding for the enzyme was cloned into plasmid pUC18, and a 1053 base-pair open reading frame that codes for 351 amino acid residues was identified as the oxd gene. A nitrilase, which participates in aldoxime metabolism in the organism, was found to be coded by the region just upstream from the oxd gene. In addition an open reading frame (orf2), whose gene product is similar to bacterial regulatory (DNA-binding) proteins, was found just upstream from the coding region of the nitrilase. These findings provide genetic evidence for a novel gene cluster that is responsible for aldoxime metabolism in this microorganism.  相似文献   

12.
Dihydroxyacetone kinase (DHAK) from the cell-free extract of methanol-grown Candida methylica was partially purified about 100-fold by a procedure employing streptomycin sulfate fractionation, ammonium sulfate fractionation, negative absorption on Cibacron blue F3G-A sephadex G 200 and DEAE-cellulose column chromatography. The enzyme was stable in 50 mM Tris-HCl buffer pH 7.5 containing 60% glycerol at -18 degrees C. The pH optimum for the activity of DHAK from C. methylica was 7.5. The purified enzyme phosphorylated dihydroxyacetone four times faster than D,L-glyceraldehyde. The apparent MICHAELIS-MENTEN constants for dihydroxyacetone and D,L-glyceraldehyde were 0.011 mM and 0.024 mM. Other C3 compounds including glycerol were not phosphorylated. ITP and UTP were used as phosphate donors with a reaction rate of 11% and 3.1%, respectively, in relation to ATP, whereas the reaction rates of DHAK from C. methylica with CTP or GTP were much lower than 1%. The reaction of DHAK depends upon the presence of divalent cations in the assay. The highest activity was found with Mg2+ ions. The reaction rates with Co2+ or Ca2+ ions were only 57.3% and 30.3%, respectively, in relation to the assay with magnesium ions. Manganese chloride in the assay led to a complete loss of activity.  相似文献   

13.
Lipoxygenases contain a nonheme iron that undergoes oxidation and reduction during the catalytic cycle. The conversion from the Fe3+ enzyme form to the Fe2+ form can be achieved using reducing inhibitors, a reaction that can be reversed with lipid hydroperoxides. The present study describes the properties of N-(4-chlorophenyl)-N-hydroxy-N'-(3-chlorophenyl)urea (CPHU), which functions as a reducing agent for various lipoxygenases and stimulates the degradation of lipid hydroperoxide catalyzed by these enzymes (pseudoperoxidase activity). CPHU was a substrate for the pseudoperoxidase reaction of purified soybean lipoxygenase-1 with apparent Km values for CPHU and 13-hydroperoxy-9,11-octadecadienoic acid (13-HpODE) of 14 and 15 microM, respectively. CPHU was converted during the pseudoperoxidase reaction to a mixture of products that can be resolved by reverse-phase high pressure liquid chromatography. By comparison with the chemical reaction of CPHU and potassium nitrosodisulfonate, the major enzymatic reaction product was tentatively identified as a one-electron oxidation product of CPHU. At low concentrations (50 microM), dithiothreitol completely protected against the degradation of hydroxyurea without inhibiting the pseudoperoxidase reaction. Under these conditions, the rate of the pseudoperoxidase reaction with CPHU as a substrate can be quantitated by the change in absorbance at 234 nm owing to the consumption of 13-HpODE. In addition to soybean lipoxygenase-1, CPHU was found to be a substrate for the pseudoperoxidase activities of purified recombinant human 5-lipoxygenase and porcine leukocyte 12-lipoxygenase. The results are consistent with CPHU reacting with lipoxygenase by a one-electron oxidation to generate the ferrous enzyme form and the nitroxide radical, which could be reduced back to CPHU by DTT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Yeast hexokinase A (ATP:D-hexose 6-phosphotransferase, EC2.7.1.1) dissociates into its subunits upon reaction with succinic anhydride. The chemically modified subunits could be isolated in a catalytically active form. The Km values found for ATP and for glucose were of the some order as those found for the native enzyme. Of the 37 amino groups present per enzyme subunit, 2-3 of these groups might be located in the proximity of the region of subunit interactions. The 50% loss of the initial activity, which follows the succinylation of these more reactive amino groups, does not seem to be due to the modification of a residue on the enzyme active site or to a change of the tertiary structure of the protein. This 50%loss of the enzyme activity may be related to the dissociation of the dimer into monomers. Both native enzyme and the succinylated subunits have the same H-dependent denaturation rate profiles in response to 2 M urea. Moreover, the apparent pK of the group involved in the transition from a more stable conformation of the protein in the acid range to a less stable one at alkaline pH seems to be similar to the pK of the group implicated in the transition between the protonated inactive form of the enzyme and an active deprotonated form. The succinylated subunit presents 'negative co-operativity' with respect to ATP at slightly acid pH; however, the burst-type slow transient in the reaction progress curve and the activation effect induced by physiological polyanions, effects observed for the native enzyme, were not detected in the standard experimental conditions with the succinylated subunit.  相似文献   

15.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

16.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

17.
The tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate-phosphorylating), EC 4.2.1.15) was purified to homogeneity from extracts of Escherichia coli K12. A spectrophotometric assay of the enzyme activity, based on the absorption difference of substrates and products at 232 nm, was developed. The enzyme has a molecular weight of 66,000 as judged by gel filtration on Sephadex G-200, and a subunit molecular weight of 39,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. This suggests either a rapid monomer-dimer equilibrium, or a very asymmetric shape for the native enzyme. The enzyme shows a narrow pH optimum around pH 7.0. The enzyme is stable for several months when stored at -20 degrees in phosphate buffer containing phosphoenol-pyruvate. Intersecting lines in double reciprocal plots of initial velocity data at substrate concentrations in the micromolar range suggest a sequential mechanism with-catalyzed reaction. Product inhibition studies specify an ordered sequential BiBi mechanism with a dead-end E-P complex. The feedback inhibitor tyrosine at concentrations above 10 muM exhibits noncompetitive inhibition with respect to erythrose-4-P, and competitive inhibition with respect to the other substrate, P-enolpyruvate. In addition, tyrosine at concentrations of at least 10 muM causes an alteration of one or more than one kinetic parameter of the enzyme.  相似文献   

18.
Two types of complexes are formed during the interaction of xanthine oxidase with p-chloromercurybenzoate (pCMB). The reversible inactive complex (presumably of absorption nature) is formed practically instantaneously and competitively with regard to the substrate (Ki=6,2 . 10(-8) M) in 0,05 M phosphate buffer (pH 7,8, 25 degrees) and does not involve the fast-reacting SH-groups of the enzyme. Reactivation of xanthine oxidase is observed during prolonged incubation of the inactive complex at 0 degrees; it is associated with the interaction between pCMB and the fact-reacting SH-groups. This interaction results in a dissociation of the inactive complex. The blocking of the slow-reacting SH-groups is accompanied by an irreversible loss of the xanthine oxidase activity. The enzyme modification by blocking of 10 fast-reacting SH-groups does not involve the Fe-S clusters, but results in local changes in the enzyme conformation. This is manifested in a 2-fold increase of Km and the rate constants of proteolysis of the modified xanthine oxidase as compared to the native enzyme. The rate constants of proteolysis by trypsin for the native and modified enzymes in 0,05 M phosphate buffer (pH 7,8; 37 degrees) are 3,7 . 10(-3) min-1 and 7,0 . 10(-3) min-1, respectively; those for chymotrypsin in the same buffer (30 degrees) are 1,5 . 10(-2) min-1 and 6,0 . 10(-2) min-1, respectively.  相似文献   

19.
Phospholipase B (PLB) from the yeast Kluyveromyces lactis was purified to homogeneity from culture medium. The enzyme was highly glycosylated with apparent molecular mass of 160-250 kDa, and had two pH optima, at pH 2.0 and pH 7.5. At acidic pH the enzyme hydrolyzed all phospholipid substrates tested here without metal ion. On the other hand, at alkaline pH the enzyme showed substrate specificity for phosphatidylcholine and lysophosphatidylcholine and required Ca2+, Fe3+, or Al3+ for the activity. The alkaline activity was increased more than 20-fold in the presence of Al3+ compared to that in the presence of Ca2+. cDNA sequence of PLB (KlPLB) was analyzed by a combination of several PCR procedures. KlPLB encoded a protein consist of 640 amino acids and the deduced amino acid sequence showed 66.7% similarity with the T. delbrueckii PLB. The amino acid sequence contained the lipase consensus sequence (G-X-S-X-G) and the catalytic aspartic acid motif. Replacement of Arg-112 or Asp-406 with alanine caused loss of the enzymatic activity at both pH. These results suggested that PLB activity are dependent on a catalytic mechanism similar to that of cytosolic phospholipase A2.  相似文献   

20.
The C-terminal amide structure of peptide hormones and neurotransmitters is synthesized via a two-step reaction catalyzed by peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidylhydroxyglycine N-C lyase. A Xenopus laevis PHM expressed in insect-cell culture by the baculovirus-expression-vector system was purified to homogeneity and characterized. Using a newly established assay system for PHM, the kinetic features of this enzyme were investigated. As expected, the enzyme required copper ions, L-ascorbate and molecular oxygen for turnover. Salts like KI and KCl, and catalase stabilized the enzyme in the presence of L-ascorbate. The optimum pH value for the enzyme reaction was around six when Mes buffer was used and around seven when phosphate buffer was used under the same assay condition. Below pH 6, acetate, iodide and chloride ions activated the reaction. The kinetic analysis is consistent with a ping-pong mechanism with respect to peptide and L-ascorbate, and the peptide showed substrate inhibition. The substrate specificity of the enzyme at the penultimate position was examined by competitive assay using tripeptides with glycine at the C-termini and the inhibitory potency of these peptides in descending order was methionine > aromatic > non-polar amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号