首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disorder of unknown aetiology that involves the loss of upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. Significant progress in understanding the cellular mechanisms of motor neuron degeneration in ALS has not been matched with the development of therapeutic strategies to prevent disease progression, and riluzole remains the only available therapy, with only marginal effects on disease survival. More recently alterations of mRNA processing in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations have provided important insights into the molecular networks implicated in the disease pathogenesis. Here we review some of the recent progress in promoting therapeutic strategies for neurodegeneration.  相似文献   

3.
Excitotoxicity has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). More recently, glial involvement has been shown to be essential for ALS-related motoneuronal death. Here, we identified an N-methyl-D-aspartate (NMDA) receptor co-agonist, D-serine (D-Ser), as a glia-derived enhancer of glutamate (Glu) toxicity to ALS motoneurons. Cell death assay indicated that primary spinal cord neurons from ALS mice were more vulnerable to NMDA toxicity than those from control mice, in a D-Ser-dependent manner. Levels of D-Ser and its producing enzyme, serine racemase, in spinal cords of ALS mice were progressively elevated, dominantly in glia, with disease progression. In vitro, expression of serine racemase was induced not only by an extracellular pro-inflammatory factor, but also by transiently expressed G93A-superoxide dismutase1 in microglial cells. Furthermore, increases of D-Ser levels were also observed in spinal cords of both familial and sporadic ALS patients. Collectively, Glu toxicity enhanced by D-Ser overproduced in glia is proposed as a novel mechanism underlying ALS motoneuronal death, and this mechanism may be regarded as a potential therapeutic target for ALS.  相似文献   

4.
An inflammatory process in association with reactive gliosis has been suggested to play an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). One of the key findings is a marked increase in the level of cyclooxygenase-2 (COX-2), a therapeutic target of ALS. We investigated the expression of CD40 in the spinal cord of a transgenic mouse model of ALS (G93A mice), and its relevance to COX-2 upregulation. CD40 was predominantly expressed in neurons in normal spinal cord and upregulated in reactive glial cells in spinal cord injury. In the spinal cord of G93A mice, the expression of CD40 was increased in both reactive microglia and astrocytes, where COX-2 was especially increased. The level of COX-2 was upregulated in microglia and astrocytes by CD40 stimulation in vitro. CD40 stimulation in primary spinal cord cultures caused motor neuron loss that was protected by selective COX-2 inhibitor. These results suggest that CD40, which is upregulated in reactive glial cells in ALS, participates in motor neuron loss via induction of COX-2.  相似文献   

5.
6.
Li L  Zhang X  Le W 《Autophagy》2008,4(3):290-293
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by selective loss of motor neurons (MNs). About 20% familial cases of ALS (fALS) carried the Cu, Zn-superoxide dismutase (SOD1) gene mutation, which plays a crucial role in the pathogenesis of fALS. There is evidence suggesting that macroautophagy can degrade mutated SOD1 in vitro. To investigate whether the mutant SOD1 can induce macroautophagy in vivo, we examined the LC3 processing in spinal cord and the activation status of macroautophagy in MNs of SOD1(G93A) transgenic mice at different stages. Our data demonstrated that autophagy was activated in spinal cord of SOD1(G93A) mice indicating a possible role of macroautophagy in the pathogenesis of ALS.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motor neurons. Recent studies have implicated that chronic hypoxia and insufficient vascular endothelial growth factor (VEGF)-dependent neuroprotection may lead to the degeneration of motor neurons in ALS. Expression of apelin, an endogenous ligand for the G protein-coupled receptor APJ, is regulated by hypoxia. In addition, recent reports suggest that apelin protects neurons against glutamate-induced excitotoxicity. Here, we examined whether apelin is an endogenous neuroprotective factor using SOD1(G93A) mouse model of ALS. In mouse CNS tissues, the highest expressions of both apelin and APJ mRNAs were detected in spinal cord. APJ immunoreactivity was observed in neuronal cell bodies located in gray matter of spinal cord. Although apelin mRNA expression in the spinal cord of wild-type mice was not changed from 4 to 18 weeks age, that of SOD1(G93A) mice was reduced along with the paralytic phenotype. In addition, double mutant apelin-deficient and SOD1(G93A) displayed the disease phenotypes earlier than SOD1(G93A) littermates. Immunohistochemical observation revealed that the number of motor neurons was decreased and microglia were activated in the spinal cord of the double mutant mice, indicating that apelin deficiency pathologically accelerated the progression of ALS. Furthermore, we showed that apelin enhanced the protective effect of VEGF on H(2)O(2)-induced neuronal death in primary neurons. These results suggest that apelin/APJ system in the spinal cord has a neuroprotective effect against the pathogenesis of ALS.  相似文献   

8.
9.
One of the causes of amyotrophic lateral sclerosis (ALS) is due to mutations in Cu,Zn-superoxide dismutase (SOD1). The mutant protein exhibits a toxic gain of function that adversely affects the function of neurons in the spinal cord, brain stem, and motor cortex. A proteomic analysis of protein expression in a widely used mouse model of ALS was undertaken to identify differences in protein expression in the spinal cords of mice expressing a mutant protein with the G93A mutation found in human ALS. Protein profiling was done on soluble and particulate fractions of spinal cord extracts using high throughput two-dimensional liquid chromatography coupled to tandem mass spectrometry. An integrated proteomics-informatics platform was used to identify relevant differences in protein expression based upon the abundance of peptides identified by database searching of mass spectrometry data. Changes in the expression of proteins associated with mitochondria were particularly prevalent in spinal cord proteins from both mutant G93A-SOD1 and wild-type SOD1 transgenic mice. G93A-SOD1 mouse spinal cord also exhibited differences in proteins associated with metabolism, protein kinase regulation, antioxidant activity, and lysosomes. Using gene ontology analysis, we found an overlap of changes in mRNA expression in presymptomatic mice (from microarray analysis) in three different gene categories. These included selected protein kinase signaling systems, ATP-driven ion transport, and neurotransmission. Therefore, alterations in selected cellular processes are detectable before symptomatic onset in ALS mouse models. However, in late stage disease, mRNA expression analysis did not reveal significant changes in mitochondrial gene expression but did reveal concordant changes in lipid metabolism, lysosomes, and the regulation of neurotransmission. Thus, concordance of proteomic and mRNA expression data within multiple categories validates the use of gene ontology analysis to compare different types of "omic" data.  相似文献   

10.
Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (ALS) through an unknown gain-of-function mechanism. Mutant SOD1 aggregation may be the toxic property. In fact, proteinaceous inclusions rich in mutant SOD1 have been found in tissues from the familial form of ALS patients and in mutant SOD1 animals, before disease onset. However, very little is known of the constituents and mechanism of formation of aggregates in ALS. We and others have shown that there is a progressive accumulation of detergent-insoluble mutant SOD1 in the spinal cord of G93A SOD1 mice. To investigate the mechanism of SOD1 aggregation, we characterized by proteome technologies SOD1 isoforms in a Triton X-100-insoluble fraction of spinal cord from G93A SOD1 mice at different stages of the disease. This showed that at symptomatic stages of the disease, part of the insoluble SOD1 is unambiguously mono- and oligoubiquitinated, in spinal cord and not in hippocampus, and that ubiquitin branches at Lys(48), the major signal for proteasome degradation. At presymptomatic stages of the disease, only insoluble unmodified SOD1 is recovered. Partial ubiquitination of SOD1-rich inclusions was also confirmed by immunohistochemical and electron microscopy analysis of lumbar spinal cord sections from symptomatic G93A SOD1 mice. On the basis of these results, we propose that ubiquitination occurs only after SOD1 aggregation and that oligoubiquitination may underline alternative mechanisms in disease pathogenesis.  相似文献   

11.
ALS, or amyotrophic lateral sclerosis, is a progressive and fatal motor neuron disease with no effective medicine. Importantly, the majority of the ALS cases are with TDP-43 proteinopathies characterized with TDP-43-positive, ubiquitin-positive inclusions (UBIs) in the cytosol. However, the role of the mismetabolism of TDP-43 in the pathogenesis of ALS with TDP-43 proteinopathies is unclear. Using the conditional mouse gene targeting approach, we show that mice with inactivation of the Tardbp gene in the spinal cord motor neurons (HB9:Cre-Tardbp(lx/-)) exhibit progressive and male-dominant development of ALS-related phenotypes including kyphosis, motor dysfunctions, muscle weakness/atrophy, motor neuron loss, and astrocytosis in the spinal cord. Significantly, ubiquitinated proteins accumulate in the TDP-43-depleted motor neurons of the spinal cords of HB9:Cre-Tardbp(lx/-) mice with the ALS phenotypes. This study not only establishes an important role of TDP-43 in the long term survival and functioning of the mammalian spinal cord motor neurons, but also establishes that loss of TDP-43 function could be one major cause for neurodegeneration in ALS with TDP-43 proteinopathies.  相似文献   

12.
13.
Amyotrophic lateral sclerosis (ALS) is a disorder that affects motor neurons in motor cortex and spinal cord, and the degeneration of both neuronal populations is a critical feature of the disease. Abnormalities in protein homeostasis (proteostasis) are well established in ALS. However, they have been investigated mostly in spinal cord but less so in motor cortex. Herein, we monitored the unfolded protein (UPR) and heat shock response (HSR), two major proteostasis regulatory pathways, in human post-mortem tissue derived from the motor cortex of sporadic ALS (SALS) and compared them to those occurring in spinal cord. Although the UPR was activated in both tissues, specific expression of select UPR target genes, such as PDIs, was observed in motor cortex of SALS cases strongly correlating with oligodendrocyte markers. Moreover, we found that endoplasmic reticulum-associated degradation (ERAD) and HSR genes, which were activated predominately in spinal cord, correlated with the expression of neuronal markers. Our results indicate that proteostasis is strongly and selectively activated in SALS motor cortex and spinal cord where subsets of these genes are associated with specific cell type. This study expands our understanding of convergent molecular mechanisms occurring in motor cortex and spinal cord and highlights cell type–specific contributions.  相似文献   

14.
15.
Cyclooxygenase-2 (COX-2) is a key molecule in the inflammatory pathway in amyotrophic lateral sclerosis (ALS). Cytosolic phospholipase A (cPLA2) is an important enzyme providing substrate for cyclooxygenases. We therefore examined cPLA2 expression in human ALS and mutant Cu/Zn superoxide dismutase (SOD1) transgenic mice and its relation to COX-2. Immunohistochemistry and real-time RT-PCR revealed elevated cPLA2 protein and its mRNA levels in the lumbar spinal cord of mutant SOD1 mice. COX-2 immunoreactivity was increased in lumbar spinal cord sections from both familial ALS (FALS) and sporadic ALS (SALS) as compared to controls, and cPLA2 immunoreactivity was increased in a patient with FALS. Oral administration of the non-selective cyclooxygenase (COX) inhibitor, sulindac, extended the survival (by 10%) of G93A SOD1 mice as compared to littermate controls. Sulindac, as well as the selective COX-2 inhibitors, rofecoxib and celecoxib reduced cPLA2 immunoreactivity in the lumbar spinal cord of G93A transgenic mice. Sulindac treatment preserved motor neurons, and reduced microglial activation and astrocytosis, in the spinal cord of G93A SOD1 transgenic mice. These results suggest that cPLA2 plays an important role in supplying arachidonic acid to the COX-2 driven inflammatory pathway in ALS associated with SOD1 mutations.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by death of motor neurons leading to muscle wasting, paralysis, and death, usually within 2–3 years of symptom onset. The causes of ALS are not completely understood, and the neurodegenerative processes involved in disease progression are diverse and complex. There is substantial evidence implicating oxidative stress as a central mechanism by which motor neuron death occurs, including elevated markers of oxidative damage in ALS patient spinal cord and cerebrospinal fluid and mutations in the antioxidant enzyme superoxide dismutase 1 (SOD1) causing approximately 20% of familial ALS cases. However, the precise mechanism(s) by which mutant SOD1 leads to motor neuron degeneration has not been defined with certainty, and the ultimate trigger for increased oxidative stress in non-SOD1 cases remains unclear. Although some antioxidants have shown potential beneficial effects in animal models, human clinical trials of antioxidant therapies have so far been disappointing. Here, the evidence implicating oxidative stress in ALS pathogenesis is reviewed, along with how oxidative damage triggers or exacerbates other neurodegenerative processes, and we review the trials of a variety of antioxidants as potential therapies for ALS.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneuron degeneration resulting in paralysis and eventual death. ALS is regarded as a motoneuron-specific disorder but increasing evidence indicates non-neuronal cells play a significant role in disease pathogenesis. Although the precise aetiology of ALS remains unclear, mutations in the superoxide dismutase (SOD1) gene are known to account for approximately 20% of familial ALS. We examined the influence of SOD1(G93A) expression in astrocytes on mitochondrial homeostasis in motoneurons in a primary astrocyte : motoneuron co-culture model. SOD1(G93A) expression in astrocytes induced changes in mitochondrial function of both SOD1(G93A) and wild-type motoneurons. In the presence of SOD1(G93A) astrocytes, mitochondrial redox state of both wild-type and SOD1(G93A) motoneurons was more reduced and mitochondrial membrane potential decreased. While intra-mitochondrial calcium levels [Ca(2+)](m) were elevated in SOD1(G93A) motoneurons, changes in mitochondrial function did not correlate with [Ca(2+)](m). Thus, expression of SOD1(G93A) in astrocytes directly alters mitochondrial function even in embryonic motoneurons, irrespective of genotype. These early deficits in mitochondrial function induced by surrounding astrocytes may increase the vulnerability of motoneurons to other neurotoxic mechanisms involved in ALS pathogenesis.  相似文献   

18.
19.
Protein misfolding is considered to be a potential contributing factor for motor neuron and muscle loss in diseases like Amyotrophic lateral sclerosis (ALS). Several independent studies have demonstrated using over-expressed mutated Cu/Zn-superoxide dismutase (mSOD1) transgenic mouse models which mimic familial ALS (f-ALS), that both muscle and motor neurons undergo degeneration during disease progression. However, it is unknown whether protein conformation of skeletal muscle and spinal cord is equally or differentially affected by mSOD1-induced toxicity. It is also unclear whether heat shock proteins (Hsp′s) differentially modulate skeletal muscle and spinal cord protein structure during ALS disease progression. We report three intriguing observations utilizing the f-ALS mouse model and cell-free in vitro system; (i) muscle proteins are equally sensitive to misfolding as spinal cord proteins despite the presence of low level of soluble and absence of insoluble G93A protein aggregate, unlike in spinal cord, (ii) Hsp′s levels are lower in muscle compared to spinal cord at any stage of the disease, and (iii) G93ASOD1 enzyme-induced toxicity selectively affects muscle protein conformation over spinal cord proteins. Together, these findings strongly suggest that differential chaperone levels between skeletal muscle and spinal cord may be a critical determinant for G93A-induced protein misfolding in ALS.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a late onset, rapidly progressive and ultimately fatal neurodegenerative disease, caused by the loss of motor neurons in the brain and spinal cord. About 10% of all ALS cases are familial (FALS), and constitute a clinically and genetically heterogeneous entity. To date, FALS has been linked to mutations in 10 different genes and to four additional chromosomal loci. Research on FALS genetics, and in particular the discoveries of mutations in the SOD1, TARDBP, and FUS genes, has provided essential information toward the understanding of the pathogenesis of ALS in general. This review presents a tentative classification of all FALS-associated genes identified so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号