共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity 总被引:5,自引:0,他引:5 下载免费PDF全文
Phosphatidylglycerol is a ubiquitous phospholipid that is also present in the photosynthetic membranes of plants. Multiple independent lines of evidence suggest that this lipid plays a critical role for the proper function of photosynthetic membranes and cold acclimation. In eukaryotes, different subcellular compartments are competent for the biosynthesis of phosphatidylglycerol. Details on the plant-specific pathways in different organelles are scarce. Here, we describe a phosphatidylglycerol biosynthesis-deficient mutant of Arabidopsis, pgp1. The overall content of phosphatidylglycerol is reduced by 30%. This mutant carries a point mutation in the CDP-alcohol phosphotransferase motif of the phosphatidylglycerolphosphate synthase (EC 2.7.8.5) isoform encoded by a gene on chromosome 2. The mutant shows an 80% reduction in plastidic phosphatidylglycerolphosphate synthase activity consistent with the plastidic location of this particular isoform. Mutant plants are pale green, and their photosynthesis is impaired. This mutant provides a promising new tool to elucidate the biosynthesis and function of plastidic phosphatidylglycerol in seed plants. 相似文献
3.
Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis 总被引:2,自引:0,他引:2 下载免费PDF全文
Ståhl U Carlsson AS Lenman M Dahlqvist A Huang B Banas W Banas A Stymne S 《Plant physiology》2004,135(3):1324-1335
A new pathway for triacylglycerol biosynthesis involving a phospholipid:diacylglycerol acyltransferase (PDAT) was recently described (Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S, [2000] Proc Natl Acad Sci USA 97: 6487-6492). The LRO1 gene that encodes the PDAT was identified in yeast (Saccharomyces cerevisiae) and shown to have homology with animal lecithin:cholesterol acyltransferase. A search of the Arabidopsis genome database identified the protein encoded by the At5g13640 gene as the closest homolog to the yeast PDAT (28% amino acid identity). The cDNA of At5g13640 (AtPDAT gene) was overexpressed in Arabidopsis behind the cauliflower mosaic virus promoter. Microsomal preparations of roots and leaves from overexpressers had PDAT activities that correlated with expression levels of the gene, thus demonstrating that this gene encoded PDAT (AtPDAT). The AtPDAT utilized different phospholipids as acyl donor and accepted acyl groups ranging from C10 to C22. The rate of activity was highly dependent on acyl composition with highest activities for acyl groups containing several double bonds, epoxy, or hydroxy groups. The enzyme utilized both sn-positions of phosphatidylcholine but had a 3-fold preference for the sn-2 position. The fatty acid and lipid composition as well as the amounts of lipids per fresh weight in Arabidopsis plants overexpressing AtPDAT were not significantly different from the wild type. Microsomal preparations of roots from a T-DNA insertion mutant in the AtPDAT gene had barely detectable capacity to transfer acyl groups from phospholipids to added diacylglycerols. However, these microsomes were still able to carry out triacylglycerol synthesis by a diacylglycerol:diacylglycerol acyltransferase reaction at the same rate as microsomal preparations from wild type. 相似文献
4.
5.
Rani SH Krishna TH Saha S Negi AS Rajasekharan R 《The Journal of biological chemistry》2010,285(49):38337-38347
A key step in the triacylglycerol (TAG) biosynthetic pathway is the final acylation of diacylglycerol (DAG) by DAG acyltransferase. In silico analysis has revealed that the DCR (defective in cuticular ridges) (At5g23940) gene has a typical HX(4)D acyltransferase motif at the N-terminal end and a lipid binding motif VX(2)GF at the middle of the sequence. To understand the biochemical function, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to acylate DAG specifically in an acyl-CoA-dependent manner. Overexpression of At5g23940 in a Saccharomyces cerevisiae quadruple mutant deficient in DAG acyltransferases resulted in TAG accumulation. At5g23940 rescued the growth of this quadruple mutant in the oleate-containing medium, whereas empty vector control did not. Lipid particles were localized in the cytosol of At5g23940-transformed quadruple mutant cells, as observed by oil red O staining. There was an incorporation of 16-hydroxyhexadecanoic acid into TAG in At5g23940-transformed cells of quadruple mutant. Here we report a soluble acyl-CoA-dependent DAG acyltransferase from Arabidopsis thaliana. Taken together, these data suggest that a broad specific DAG acyltransferase may be involved in the cutin as well as in the TAG biosynthesis by supplying hydroxy fatty acid. 相似文献
6.
Ayciriex S Le Guédard M Camougrand N Velours G Schoene M Leone S Wattelet-Boyer V Dupuy JW Shevchenko A Schmitter JM Lessire R Bessoule JJ Testet E 《Molecular biology of the cell》2012,23(2):233-246
For many years, lipid droplets (LDs) were considered to be an inert store of lipids. However, recent data showed that LDs are dynamic organelles playing an important role in storage and mobilization of neutral lipids. In this paper, we report the characterization of LOA1 (alias VPS66, alias YPR139c), a yeast member of the glycerolipid acyltransferase family. LOA1 mutants show abnormalities in LD morphology. As previously reported, cells lacking LOA1 contain more LDs. Conversely, we showed that overexpression results in fewer LDs. We then compared the lipidome of loa1Δ mutant and wild-type strains. Steady-state metabolic labeling of loa1Δ revealed a significant reduction in triacylglycerol content, while phospholipid (PL) composition remained unchanged. Interestingly, lipidomic analysis indicates that both PLs and glycerolipids are qualitatively affected by the mutation, suggesting that Loa1p is a lysophosphatidic acid acyltransferase (LPA AT) with a preference for oleoyl-CoA. This hypothesis was tested by in vitro assays using both membranes of Escherichia coli cells expressing LOA1 and purified proteins as enzyme sources. Our results from purification of subcellular compartments and proteomic studies show that Loa1p is associated with LD and active in this compartment. Loa1p is therefore a novel LPA AT and plays a role in LD formation. 相似文献
7.
The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. 总被引:14,自引:3,他引:14 下载免费PDF全文
The first committed step in the gibberellin (GA) biosynthetic pathway is the conversion of geranylgeranyl pyrophosphate (GGPP) through copalyl pyrophosphate (CPP) to ent-kaurene catalyzed by ent-kaurene synthetases A and B. The ga1 mutants of Arabidopsis are gibberellin-responsive male-sterile dwarfs. Biochemical studies indicate that biosynthesis of GAs in the ga1 mutants is blocked prior to the synthesis of ent-kaurene. The GA1 locus was cloned previously using the technique of genomic subtraction. Here, we report the isolation of a nearly full-length GA1 cDNA clone from wild-type Arabidopsis. This cDNA clone encodes an active protein and is able to complement the dwarf phenotype in ga1-3 mutants by Agrobacterium-mediated transformation. In Escherichia coli cells that express both the Arabidopsis GA1 gene and the Erwinia uredovora gene encoding GGPP synthase, CPP was accumulated. This result indicates that the GA1 gene encodes the enzyme ent-kaurene synthetase A, which catalyzes the conversion of GGPP to CPP. Subcellular localization of the GA1 protein was studied using 35S-labeled GA1 protein and isolated pea chloroplasts. The results showed that the GA1 protein is imported into and processed in pea chloroplasts in vitro. 相似文献
8.
9.
Diacylglycerol acyltransferase (DGAT) catalyses the acylation of the sn-3 hydroxy group of sn-1,2-diacylglycerol using acyl-CoA. The gene encoding DGAT from Arabidopsis thaliana has been cloned and the function of the enzyme proved by expression of the coding sequence using a bacculovirus expression system in insect cell cultures. The expressed protein catalysed the synthesis of [(14)C]triacylglycerol from [(14)C]diacylglycerol and oleoyl-CoA. The heterologously expressed DGAT activity was found mostly associated with the 100000 g pellet. The optimum activity was achieved at a neutral pH, in the presence of Mg2+, and at an optimum oleoyl-CoA concentration of 20 microM. The DGAT used the substrates palmitoyl-CoA and oleoyl-CoA equally effectively. In these experiments, the inclusion of recombinant acyl-CoA binding protein had a relatively small effect upon DGAT activity. 相似文献
10.
Mougenot P Namane C Fett E Camy F Dadji-Faïhun R Langot G Monseau C Onofri B Pacquet F Pascal C Crespin O Ben-Hassine M Ragot JL Van-Pham T Philippo C Chatelain-Egger F Péron P Le Bail JC Guillot E Chamiot-Clerc P Chabanaud MA Pruniaux MP Schmidt F Venier O Nicolaï E Viviani F 《Bioorganic & medicinal chemistry letters》2012,22(7):2497-2502
A novel class of DGAT1 inhibitors containing a thiadiazole core has been discovered. Chemical optimization lead to inhibitors of human DGAT1 with an appropriate ADME profile and that show in vivo activity in target tissues. 相似文献
11.
An Arabidopsis mutant with improved salt tolerant germination was isolated from a T-DNA insertion library and designated as
AT6. This mutant also exhibited improved salt tolerance phenotype in later developmental stages. But no apparent difference
was observed in response to ABA, GA or ethylene during germination between the mutant and the wildtype. The T-DNA was inserted
in the At1g73660 locus that coded for a putative MAPKKK. Genetic and multiple mutant allele analyses confirmed that the knockout
of this gene resulted in improved salt tolerance phenotype and provided strong evidence that the genetic locus At1g73660 negatively
regulated salt tolerance in Arabidopsis. The At1g73660 was down regulated in response to salt stress in the mutants, which
is consistent with its role as a negative regulator. It is therefore hypothesized that the AT1g73660 may serve as one of the
off-switches of stress responses that are required for unstressed conditions. 相似文献
12.
Diepold A Li G Lennarz WJ Nürnberger T Brunner F 《The Plant journal : for cell and molecular biology》2007,52(1):94-104
Deglycosylation of misfolded proteins by the endoplasmic reticulum-associated degradation (ERAD) pathway is catalyzed by peptide:N-glycanases (PNGases) that are highly conserved among mammals and yeast. The catalytic mechanism of PNGases employs a catalytic triad consisting of Cys, His and Asp residues, which is shared by other enzyme families such as cysteine proteases and protein cross-linking transglutaminases (TGases). In contrast to the yeast and mammalian systems, very little is known about ERAD in plants and the enzymes responsible for proper clearance of misfolded plant proteins. We have used a computer-based modeling approach to identify an Arabidopsis thaliana PNGase (AtPNG1). AtPNG1 is encoded by a single-copy gene and displays high structural homology with known PNGases. Importantly, heterologous expression of AtPNG1 restored N-glycanase activity in a PNGase-deficient Saccharomyces cerevisiae mutant. The AtPNG1 gene is uniformly and constitutively expressed at low levels throughout all developmental stages of the plant, and its expression does not appear to be subject to substantial regulation by external stimuli. Recently, recombinant AtPNG1 produced in Escherichia coli was reported to display TGase activity (Della Mea et al., Plant Physiol. 135, 2046-54, 2004). However, inactivation of the AtPNG1 gene did not result in decreased TGase activity in the mutant plant, and recombinant AtPNG1 produced in S. cerevisiae exhibited only residual TGase activity. We propose that the AtPNG1 gene encodes a bona fide peptide:N-glycanase that contributes to ERAD-related protein quality control in plants. 相似文献
13.
Helliwell CA Chin-Atkins AN Wilson IW Chapple R Dennis ES Chaudhury A 《The Plant cell》2001,13(9):2115-2126
Arabidopsis amp1 mutants show pleiotropic phenotypes, including altered shoot apical meristems, increased cell proliferation, polycotyly, constitutive photomorphogenesis, early flowering time, increased levels of endogenous cytokinin, and increased cyclin cycD3 expression. We have isolated the AMP1 gene by map-based cloning. The AMP1 cDNA encodes a 706;-amino acid polypeptide with significant similarity to glutamate carboxypeptidases. The AMP1 mRNA was expressed in all tissues examined, with higher expression in roots, stems, inflorescences, and siliques. Microarray analysis identified four mRNA species with altered expression in two alleles of amp1, including upregulation of CYP78A5, which has been shown to mark the shoot apical meristem boundary. The similarity of the AMP1 protein to glutamate carboxypeptidases, and in particular to N-acetyl alpha-linked acidic dipeptidases, suggests that the AMP1 gene product modulates the level of a small signaling molecule that acts to regulate a number of aspects of plant development, in particular the size of the apical meristem. 相似文献
14.
15.
The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. 总被引:12,自引:0,他引:12 下载免费PDF全文
The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases. 相似文献
16.
Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1 总被引:6,自引:0,他引:6 下载免费PDF全文
Tsujimoto Y Numaga T Ohshima K Yano MA Ohsawa R Goto DB Naito S Ishikawa M 《The EMBO journal》2003,22(2):335-343
The tom2-1 mutation of Arabidopsis thaliana reduces the efficiency of intracellular multiplication of tobamoviruses. The tom2-1 mutant was derived from fast-neutron-irradiated seeds, and the original mutant line also carries ttm1, a dominant modifier that increases tobamovirus multiplication efficiency in a tobamovirus-strain-specific manner in the tom2-1 genetic background. Here, we show that the tom2-1 mutation involved a deletion of approximately 20 kb in the nuclear genome. The deleted region included two genes named TOM2A and TOM2B that were both associated with the tom2-1 phenotype, whereas ttm1 corresponded to the translocation of part of the deleted region that included intact TOM2B but not TOM2A. TOM2A encodes a 280 amino acid putative four-pass transmembrane protein with a C-terminal farnesylation signal, while TOM2B encodes a 122 amino acid basic protein. The split-ubiquitin assay demonstrated an interaction of TOM2A both with itself and with TOM1, an integral membrane protein of A.thaliana presumed to be an essential constituent of tobamovirus replication complex. The data presented here suggest that TOM2A is also an integral part of the tobamovirus replication complex. 相似文献
17.
Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis 总被引:3,自引:0,他引:3
Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expression of castor (Ricinus communis) fatty acid hydroxylase (RcFAH) in Arabidopsis (Arabidopsis thaliana) resulted in only 17% hydroxy fatty acids (HFAs) in the seed oil. In order to increase HFA levels, we investigated castor phospholipid:diacylglycerol acyltransferase (PDAT). We cloned cDNAs encoding three putative PDAT enzymes from a castor seed cDNA library and coexpressed them with RcFAH12. One isoform, RcPDAT1A, increased HFA levels to 27%. Analysis of HFA-triacylglycerol molecular species and regiochemistry, along with analysis of the HFA content of phosphatidylcholine, indicates that RcPDAT1A functions as a PDAT in vivo. Expression of RcFAH12 alone leads to a significant decrease in FA content of seeds. Coexpression of RcPDAT1A and RcDGAT2 (for diacylglycerol acyltransferase 2) with RcFAH12 restored FA levels to nearly wild-type levels, and this was accompanied by a major increase in the mass of HFAs accumulating in the seeds. We show the usefulness of RcPDAT1A for engineering plants with high levels of HFAs and alleviating bottlenecks due to the production of unusual FAs in transgenic oilseeds. 相似文献
18.
A role for diacylglycerol acyltransferase during leaf senescence 总被引:18,自引:0,他引:18
19.
Diacylglycerol acyltransferase (DGAT) is a crucial enzyme in the triacylglycerol (TAG) biosynthesis pathway. The oleaginous fungus Mortierella alpina can accumulate large amounts of arachidonic acid (ARA, C20:4) in the form of TAG. Therefore, it is important to study the functional characteristics of its DGAT. Two putative genes MaDGAT1A/1B encoding DGAT1 were identified in M. alpina ATCC 32222 genome by sequence alignment. Sequence alignment with identified DGAT1 homologs showed that MaDGAT1A/1B contain seven conserved motifs that are characteristic of the DGAT1 subfamily. Conserved domain analysis showed that both MaDGAT1A and MaDGAT1B belong to the Membrane-bound O-acyltransferases superfamily. The transforming with MaDGAT1A/1B genes could increase the accumulation of TAG in Saccharomyces cerevisiae to 4·47 and 7·48% of dry cell weight, which was 7·3-fold and 12·3-fold of the control group, respectively, but has no effect on the proportion of fatty acids in TAG. This study showed that MaDGAT1A/1B could effectively promote the accumulation of TAG and therefore may be used in metabolic engineering aimed to increase TAG production of oleaginous fungi. 相似文献
20.
The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion 总被引:14,自引:0,他引:14 下载免费PDF全文
Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein-like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf. 相似文献