首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Membrane-bound ribosomes are thought to secrete protein for export and free ribosomes to secrete protein for intracellular use. The proportion of the total ribosomes that is bound to membranes in normal mouse kidneys has been estimated by three different methods, and the results have been compared with those obtained by a fourth method used by us previously. The most valid estimates appear to be those obtained (a) by comparison of radioactivity in peaks representing free and membrane-bound ribosomes on linear sucrose gradients after labeling for 24 hr with 14C-orotic acid, and (b) by measurements of optical density in free and bound ribosomes that had been separated by centrifugation on discontinuous gradients of 0.5 M/2.0 M sucrose. Analyses by these methods show that about 20–25% of the ribosomes in a postnuclear supernatant prepared from mouse kidneys, but only 10–15% of the ribosomes in a post-mitochondrial supernatant, are membrane-bound. About 75% of the bound ribosomes sediment as polysomes of many different sizes. The proportion of membrane-bound ribosomes and their aggregation into polysomes were unchanged in kidneys undergoing compensatory hypertrophy after removal of the opposite kidney. These experiments show that, unlike liver, kidney has a predominance of free ribosomes compared to bound ribosomes; those ribosomes that are membrane-bound do not become free during compensatory renal growth.  相似文献   

3.
Activity of Thylakoid-bound Ribosomes in Pea Chloroplasts   总被引:4,自引:3,他引:1       下载免费PDF全文
Pea (Pisum sativum) chloroplast thylakoid membranes were prepared by washing in hypotonic buffers. These membranes contained bound ribosomes which were active in protein synthesis when supplemented with soluble components from a strain of Escherichia coli low in ribonuclease. After dissolving the membranes by Triton and purification of the ribosomes, sucrose density gradient profiles indicated the presence of polysomal material as well as monomeric ribosomes. Most of the products of protein synthesis remained associated with the thylakoid membranes even after ribosomes were removed completely by high salt concentrations in the absence of Mg2+. Of the newly formed products, 50% could be digested by pronase, while the remainder were protected by their association with the thylakoid membranes. The products are likely to be a mixture of intrinsic and extrinsic membrane proteins, with only the former completely protected by the membranes from attack by proteases.  相似文献   

4.
Beaudoin F  Napier JA 《Planta》2000,210(3):439-445
 Full-length and N-terminal deletions of a sunflower (Helianthus annuus L.) oleosin protein were expressed ectopically in transgenic Arabidopsis thaliana (L.) Heynh. Immunological detection of the sunflower protein revealed that it accumulated in a range of non-oil-storing tissues, including leaves, roots and petals. This accumulation was shown to result from deposition in the microsomal membrane fraction. Expression in oil-storing tissues (such as seeds) of oleosin N-terminal deletions revealed impaired transfer from the endoplasmic reticulum to the oil body. In non-oil-storing tissues, accumulation in the microsomal membrane fraction was progressively reduced by N-terminal deletion. These data confirm the role of the endomembrane system in the targeting of the oleosin and its intimate relationship with oil-body biogenesis. Received: 26 August 1999 / Accepted: 4 October 1999  相似文献   

5.
C. J. Bailey  A. Cobb  D. Boulter 《Planta》1970,95(2):103-118
Summary Cultured slices of cotyledon tissue from 60-day broad bean have been shown to synthesise globulin protein extensively. About 80% of the 3H-leucine incorporated into protein was incorporated into globulin protein; 35S-sulphate was also incorporated by the slices.The rate and dependence of the incorporation on the quantity of radiochemical added and the volume of culture medium were also demonstrated. It was concluded that the cotyledon slices maintained the in vivo behaviour during the period of the experiments.The slice system was used in an electron autoradiographic experiment. It was shown that grain counts were associated initially with the endoplasmic reticulum then moved to the protein bodies. It was concluded that globulin protein is synthesised by the ribosomes of the endoplasmic reticulum and then moves to the protein bodies; it was suggested that the process takes 25 min.  相似文献   

6.
Rough microsomes were incubated in an in vitro amino acid-incorporating system for labeling the nascent polypeptide chains on the membrane-bound ribosomes. Sucrose density gradient analysis showed that ribosomes did not detach from the membranes during incorporation in vitro. Trypsin and chymotrypsin treatment of microsomes at 0° led to the detachment of ribosomes from the membranes; furthermore, trypsin produced the dissociation of released, messenger RNA-free ribosomes into subunits. Electron microscopic observations indicated that the membranes remained as closed vesicles. In contrast to the situation with free polysomes, nascent chains contained in rough microsomes were extensively protected from proteolytic attach. By separating the microsomal membranes from the released subunits after proteolysis, it was found that nascent chains are split into two size classes of fragments when the ribosomes are detached. These were shown by column chromatography on Sephadex G-50 to be: (a) small (39 amino acid residues) ribosome-associated fragments and (b) a mixture of larger membrane-associated fragments excluded from the column. The small fragments correspond to the carboxy-terminal segments which are protected by the large subunits of free polysomes. The larger fragments associated with the microsomal membranes depend for their protection on membrane integrity. These fragments are completely digested if the microsomes are subjected to proteolysis in the presence of detergents. These results indicate that when the nascent polypeptides growing in the large subunits of membrane-bound ribosomes emerge from the ribosomes they enter directly into a close association with the microsomal membrane.  相似文献   

7.
The amount of chloroplast ribosomal RNAs of Chlamydomonas reinhardtii which sediment at 15,000 g is increased when cells are treated with chloramphenicol. Preparations of chloroplast membranes from chloramphenicol-treated cells contain more chloroplast ribosomal RNAs than preparations from untreated cells. The membranes from treated cells also contain more ribosome-like particles, some of which appear in polysome-like arrangements. About 50% of chloroplast ribosomes are released from membranes in vitro as subunits by 1 mM puromycin in 500 mM KCl. A portion of chloroplast ribosomal subunits is released by 500 mM KCl alone, a portion by 1 mM puromycin alone, and a portion by 1 mM puromycin in 500 mM KCl. Ribosomes are not released from isolated membranes by treatment with ribonuclease. Membranes in chloroplasts of chloramphenicol-treated cells show many ribosomes associated with membranes, some of which are present in polysome-like arrangements. This type of organization is less frequent in chloroplasts of untreated cells. Streptogramin, an inhibitor of initiation, prevents chloramphenicol from acting to permit isolation of membrane-bound ribosomes. Membrane-bound chloroplast ribosomes are probably a normal component of actively growing cells. The ability to isolate membrane-bound ribosomes from chloramphenicol-treated cells is probably due to chloramphenicol-prevented completion of nascent chains during harvesting of cells. Since chloroplasts synthesize some of their membrane proteins, and a portion of chloroplast ribosomes is bound to chloroplast membranes through nascent protein chains, it is suggested that the membrane-bound ribosomes are synthesizing membrane protein.  相似文献   

8.
Ricin from Ricinus communis was isolated and the binding of 3H-reductively alkylated or 125I-iodinated ricin was studied by incubating the toxic protein with ribosomes and isolating the ricin-ribosome complex by centrifugation. Neither of the labeled ricin derivatives nor 3H-labeled A chain bound Escherichia coli ribosomes, but both bound rat liver ribosomes in a reproducible manner. 3H-labeled ricin bound in a ratio of 1 mol/mol of ribosomes with a dissociation constant of 3 μm as calculated from a Scatchard plot. Similarly, 3H-labeled B chain isolated from ricin also bound in a one-to-one complex with a dissociation constant of 1 μm. The binding of ricin and ricin B chain was sensitive to lactose, while the binding of reduced ricin or ricin A chain was not prevented by lactose. Reduced 125I-labeled ricin in the presence of lactose and 3H-labeled A chain bound with a ratio of 2 mol/mol of ribosomes. It was further demonstrated that 3H-labeled ricin A chain bound only to the 60S ribosomal subunit and not to the 40S ribosomal subunit. The dissociation constant for the binding was 2 μm both in the presence and absence of lactose and 2 mol of A chain were bound per mole of 60S ribosomal subunit.  相似文献   

9.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

10.
P. I. Payne  D. Boulter 《Planta》1969,87(1-2):63-68
Summary During the first few days of germination, the RNA content of the cotyledons remained approximately constant, but the quantity of membrane-bound ribosomes increased. Experiments with orthophosphate-32P indicated that these ribosomes were synthesised de novo, and did not originate by the attachment to membranes of pre-existing free ribosomes. This conclusion was discussed in relation to the suggestion that free and membrane-bound ribosomes synthesise different groups of proteins.  相似文献   

11.
Rabbit globin messenger RNA was labelled in vitro with 125I to specific activities in the range 20 to 200 × 106 cts/min per μg. This 125I-labelled mRNA bound to rabbit reticulocyte ribosomes with the kinetics and sensitivity to inhibitors expected from its participation in the normal process of the initiation of protein synthesis. Furthermore, when modified in 25% of its cytidine residues with unlabelled iodide, the mRNA coded for the same series of initiation peptides as did the unmodified mRNA. Using the techniques of RNA fingerprinting, the binding reaction was shown to select against contaminants and against “globin mRNA” molecules which lack a particular oligonucleotide implicated in the initiation process. When the 125I-labelled mRNA was bound to ribosomes, both the initiating 40 S subunits and the 80 S ribosomes protected a fraction of the mRNA from digestion by pancreatic ribonuclease. Fingerprint analysis showed that highly specific regions of the mRNA were protected by the 40 S subunits and 80 S ribosomes and that these two protected regions were not identical.  相似文献   

12.
13.
A three-phase discontinuous sucrose gradient yielded two fractions of chloroplast envelope membranes from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L., mesophyll and undifferentiated chloroplasts). These species were selected to represent plants with fast photorespiration and slow net photosynthesis, fast photorespiration yet fast net photosynthesis, and slow photorespiration and fast net photosynthesis, respectively. Buoyant densities were 1.08 and 1.11 g cm-3. The light fraction contained primarily single (incomplete) membrane vesicles and the heavy fraction double (complete) ones. Enzymic, chemical, and electron microscopic examination of the complete envelope membranes showed a lack of microbial, microsomal, mitochondrial, and lamellar membrane contamination as well as stromal contamination. Envelope membranes for all species examined were found to contain 2 to 4% of the total chloroplast protein and yields of about 0.2 to 0.4 mg of protein were obtained from 40 g leaves. An Mg2+-dependent nonlatent ATPase, a marker enzyme for chloroplast envelope membranes, had the following activities (μmoles of phosphate released/hr-1 mg protein-1): spinach, 77; sunflower, 163; old maize, 126; and young maize, 87. Bicarbonate transport was directly correlated with levels of ATPase activity in spinach and sunflower envelope membranes. Transport of HCO3 with sunflower envelope membranes approached that of young maize.  相似文献   

14.
The fluorescent probe l-anilinonaphthalene-8-sulfonate (ANS) has been used to investigate the properties of plasma membranes derived from normal hepatocytes and from hepatoma tissue culture (HTC) cells as well as used to study the effects of Ca2+ and procaine on these membrane systems. The interaction of ANS with hepatocyte plasma membranes (50 nmol/mg protein; KD = 120,μM) resulted in a marked enhancement of fluorescence and a 20-nm blue shift. Both Ca2+ and procaine further increased the fluorescence intensity. Binding studies showed no alteration in the number of ANS binding sites but a significant decrease in KD (40–50 μm). Procaine was also shown to completely displace Ca2+ from the membrane. The interaction of ANS with HTC cell plasma membranes again resulted in an enhancement in fluorescence intensity but with different binding properties (102 nmol/mg protein; KD = 74 μM) from the hepatocyte system. The addition of Ca+2 resulted in the formation of high and low affinity ANS binding sites as shown by Scatchard plot analysis with KD values of 15 μm and 50 μm. The effect of procaine on ANS fluorescence in the normal and transformed cell membranes was indistinguishable; however, in the latter system procaine only displaced 60% of the bound Ca2+. These studies suggest several structural and binding alterations between plasma membranes derived from hepatocytes and HTC cells.  相似文献   

15.
Cytoplasmic extracts of the transplantable RPC-20 plasma-cell tumor were fractionated by sucrose density gradient centrifugation. Four major fractions were distinguished: (a) microsomes and mitochondria; (b) membrane-free polyribosomes; (c) free monomeric ribosomes; and (d) soluble fraction. The fractions were analyzed for RNA and lipid phosphorus, and their particulate components were characterized by electron microscopy. Particular attention was paid to the problem of membrane contamination of the free polyribosome fraction. It was shown that this contamination was small in relation with the total content of ribosomes in the fraction, and that it consisted primarily of smooth-surfaced membranes which were not physically associated with the polyribosomes themselves. In vivo incorporation studies were carried out by injecting tumor-bearing animals intravenously with leucine-C14, removing the tumors at various times thereafter, and determining the distribution of protein radioactivity among the gradient-separated cytoplasmic fractions. The free polyribosome and the microsome-mitochondria fractions constituted active centers for protein synthesis. It was shown that nascent protein of the free polyribosome fractions was not associated significantly with the contaminating membranes. The kinetics of labeling during incorporation times up to 11 min suggested that protein synthesized on the free polyribosomes was rapidly transferred in vivo to the soluble fraction of the cell, while protein synthesized by the microsomes and mitochondria remained localized within these elements. It was estimated that the free polyribosome fraction and the microsome-mitochondria fraction accounted for approximately equal proportions of the total cytoplasmic protein synthesis in vivo.  相似文献   

16.
Amylase distribution was studied in guinea pig pancreas microsomes fractionated by centrifuging, for 2 hr at 57,000 g in a linear 10 to 30% sucrose gradient, a resuspended high speed pellet obtained after treating microsomes with 0.04% deoxycholate (DOC).1 Amylase appeared in the following positions in the gradient: (a) a light region which contained ∼35% of total enzymic activity and which coincided with a monomeric ribosome peak; (b) a heavy region which contained ∼10% of enzymic activity in a sharp peak but which had very little accompanying OD260 absorption; (c) a pellet at the bottom of the centrifuge tube which contained ∼20% of the enzymic activity. After 5 to 20 min'' in vivo labeling with leucine-1-C14, radioactive amylase was solubilized from these three fractions by a combined DOC-spermine treatment and purified by precipitation with glycogen, according to Loyter and Schramm. In all cases, the amylase found in the pellet had five to ten times the specific activity (CPM/enzymic activity) of the amylase found in the light or heavy regions of the gradient. The specific radioactivity (CPM/mg protein) of the proteins or peptides not extracted by DOC-spermine was similar for all three fractions. Hypotonic treatment of the fractions solubilized ∼80% of the total amylase in the fraction from the heavy region of the gradient, but only ∼20% of the amylase in the monomer or pellet fraction. Electron microscope observation indicates that the monomer region of the gradient contained only ribosomes, that the heavy region of the gradient contained small vesicles with relatively few attached ribosomes, and that the pellet was composed mostly of intact or ruptured microsomes with ribosomes still attached to their membranes. It is concluded from the above, and from other evidence, that most of the amylase activity in the monomer region is due to old, adsorbed enzyme; in the heavy region mostly to enzyme already inside microsomal vesicles; and in the pellet to a mixture of newly synthesized and old amylase still attached to ribosomes. Furthermore, the ribosomes with nascent, finished protein still bound to them are more firmly attached to the membranes than are ribosomes devoid of nascent protein.  相似文献   

17.
Lord JM  Bowden L 《Plant physiology》1978,61(2):266-270
At the onset of castor bean (Ricinus communis) germination, 76% of the cellular malate synthase activity of the endosperm tissue was located in the microsomal fraction, with the remainder in the glyoxysomal fraction. During later developmental stages, when rapid malate synthase synthesis was occurring, an increasing proportion of the enzyme was recovered in glyoxysomes. The kinetics of [35S]methionine incorporation into microsomal and glyoxysomal malate synthase in 2-day-old endosperm tissue was followed by employing antiserum raised against glyoxysomal malate synthase to precipitate specifically the enzyme from KCl extracts of these organelle fractions. This experiment showed that microsomal malate synthase was labeled before the glyoxysomal enzyme. When such kinetic experiments were interrupted by the addition of an excess of unlabeled methionine, 35S-labeled malate synthase was rapidly lost from the microsomal fraction and was quantitatively recovered in the glyoxysomal fraction.

Free cytoplasmic ribosomes were separated from bound ribosomes (rough microsomes) using endosperm tissue labeled with [35S]methionine or 14C-amino-acids. Nascent polypeptide chains were released from polysome fractions using a puromycin-high salt treatment, and radioactive malate synthase was shown to be exclusively associated with bound polysomes.

Together these data establish that malate synthase is synthesized on bound ribosomes and vectorially discharged into the endoplasmic reticulum cisternae prior to its ultimate sequestration in glyoxysomes.

  相似文献   

18.
Cytoplasmic distribution of heat shock proteins in soybean   总被引:2,自引:2,他引:0       下载免费PDF全文
Mansfield MA  Key JL 《Plant physiology》1988,86(4):1240-1246
Previous analyses of the distribution of heat shock (hs) proteins in soybean (Glycine max L. Merr., var Wayne) have demonstrated that a fraction of the low molecular weight hs protein associates with ribosomes during hs. To more specifically characterize the nature of this association, isokinetic centrifugation of ribosomes through sucrose gradients was used to separate monosomes from polysomes. The present analysis demonstrated that hs proteins were bound to polysomes but not monosomes. Treatment of polysomes with puromycin, K+, and Mg2+, which caused dissociation of ribosomes into 40S and 60S subunits, also caused dissociation of the hs proteins. Using the procedure of Nover et al. (1983, Mol. Cell Biol, 3: 1628-1655), a hs granule fraction was also isolated. As in tomato cells, hs granules from soybean seedlings contained the low molecular weight hs proteins as a primary component and a number of other non-hs proteins of relative molecular mass 30 to 40 kilodaltons and 70 to 90 kilodaltons. On metrizamide gradients they exhibited a buoyant density of 1.20 to 1.21 grams per cubic centimeter, typical of ribonucleoprotein particles. Heat shock granules were characterized as unique cytoplasmic particles based on protein composition and buoyant density. Isopycnic centrifugation of ribosome preparations demonstrated that they contained hs granules, but the hs proteins bound to polysomes were not released by KCI/EDTA treatment. Thus, the polysome-bound hs proteins and the granule-bound hs proteins appear to represent two distinct populations of hs proteins in the cytoplasm. Heat shock granules were not distinguishable from ribosomes at the level of resolution used in transmission electron microscopy.  相似文献   

19.
Rat liver rough microsomal membranes were stripped of bound ribosomes by treatment with puromycin and high concentrations of monovalent ions. Ribosomal subunits labeled in the RNA were detached from rough microsomes by the same procedure, recombined into monomers, and then incubated with stripped membranes in a medium of low ionic strength (25 mm-KCl, 50 mm-Tris-HCl, 5 mm-MgCl2). These ribosomes readily attached to the stripped membranes, as determined by isopycnic flotation of the reconstituted microsomes. The binding reaction was complete after incubation for five minutes at 37 °C, but also proceeded at 0 °C, at a lower rate. Scatchard plots showed a binding constant of ~8 × 107m?1 and ~5 × 10?8 mol binding sites per gram of membrane protein. Native rough microsomes showed a much lower binding capacity at 0 °C than stripped rough microsomes, but showed considerable uptake of ribosomes at 37 °C. Smooth microsomes, treated for stripping and incubated at 0 °C, accepted less than half as many ribosomes as stripped rough microsomes. Erythrocyte ghosts were incapable of binding ribosomes. Microsomal binding sites were heat sensitive, were destroyed by a brief incubation with a mixture of trypsin and chymotrypsin in the cold, and were unaffected by incubation with phospholipase C.Ribosome binding was decreased by increasing the concentration of monovalent ions and was strongly inhibited by 10?4m-aurintricarboxylic acid. Experiments with purified ribosomal subunits revealed that at concentrations of monovalent ions close to physiological concentrations (100 to 150 mm-KCl), microsomal binding sites had a greater affinity for 60 S than for 40 S subunits.Stripped rough microsomes were also capable of accepting polysomes obtained from rough microsomes by detergent treatment. Although this binding presumably involves the correct membrane binding sites, polypeptides discharged from re-bound polymers were not transferred to the vesicular cavities, as in native microsomes. The released polypeptides remained firmly associated with the outer microsomal face, as shown by their accessibility to proteases.  相似文献   

20.
Until now, there has been no conclusive demonstration of any in vivo oleosin degradation at the early stages of oil body mobilization. The present work on sunflower (Helianthus annuus L.) has demonstrated limited oleosin degradation during seed germination. Seedling cotyledon homogenization in Tris-urea buffer, followed by SDS-PAGE, revealed three oleosins (16, 17.5 and 20 kDa). Incubation of oil bodies with total soluble protein from 4-day-old seedlings resulted in oleosin degradation. In vitro and in vivo degradation of the 17.5-kDa oleosin was faster than the other two, indicating its greater susceptibility to proteolysis. Oleosin degradation by the total soluble protein resulted in a transient 14.5-kDa polypeptide, followed by an 11-kDa protease-protected fragment, which appeared post-germinatively and accumulated corresponding to increased rate of lipid mobilization. A 65-kDa protease, active at pH 7.5-9.5, was zymographically detected in the total soluble protein. Its activity increased along with in vivo accumulation of the protease-protected fragment during seed germination and accompanying lipid mobilization. Protease-treated oil bodies were more susceptible to maize lipase action. Differential proteolytic sensitivity of different oleosins in the oil body membranes could be a determinant of oil body longevity during seed germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号