首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-resolution structure of the N-terminal domain (NTD) of the retroviral capsid protein (CA) of Mason-Pfizer monkey virus (M-PMV), a member of the betaretrovirus family, has been determined by NMR. The M-PMV NTD CA structure is similar to the other retroviral capsid structures and is characterized by a six α-helix bundle and an N-terminal β-hairpin, stabilized by an interaction of highly conserved residues, Pro1 and Asp57. Since the role of the β-hairpin has been shown to be critical for formation of infectious viral core, we also investigated the functional role of M-PMV β-hairpin in two mutants (i.e., ΔP1NTDCA and D57ANTDCA) where the salt bridge stabilizing the wild-type structure was disrupted. NMR data obtained for these mutants were compared with those obtained for the wild type. The main structural changes were observed within the β-hairpin structure; within helices 2, 3, and 5; and in the loop connecting helices 2 and 3. This observation is supported by biochemical data showing different cleavage patterns of the wild-type and the mutated capsid-nucleocapsid fusion protein (CANC) by M-PMV protease. Despite these structural changes, the mutants with disrupted salt bridge are still able to assemble into immature, spherical particles. This confirms that the mutual interaction and topology within the β-hairpin and helix 3 might correlate with the changes in interaction between immature and mature lattices.  相似文献   

2.
Hepatitis A virus (HAV) encodes a single polyprotein which is posttranslationally processed into the functional structural and nonstructural proteins. Only one protease, viral protease 3C, has been implicated in the nine protein scissions. Processing of the capsid protein precursor region generates a unique intermediate, PX (VP1-2A), which accumulates in infected cells and is assumed to serve as precursor to VP1 found in virions, although the details of this reaction have not been determined. Coexpression in transfected cells of a variety of P1 precursor proteins with viral protease 3C demonstrated efficient production of PX, as well as VP0 and VP3; however, no mature VP1 protein was detected. To identify the C-terminal amino acid residue of HAV VP1, we performed peptide sequence analysis by protease-catalyzed [18O]H2O incorporation followed by liquid chromatography ion-trap microspray tandem mass spectrometry of HAV VP1 isolated from purified virions. Two different cell culture-adapted isolates of HAV, strains HM175pE and HM175p35, were used for these analyses. VP1 preparations from both virus isolates contained heterogeneous C termini. The predominant C-terminal amino acid in both virus preparations was VP1-Ser274, which is located N terminal to a methionine residue in VP1-2A. In addition, the analysis of HM175pE recovered smaller amounts of amino acids VP1-Glu273 and VP1-Thr272. In the case of HM175p35, which contains valine at amino acid position VP1-273, VP1-Thr272 was found in addition to VP1-Ser274. The data suggest that HAV 3C is not the protease responsible for generation of the VP1 C terminus. We propose the involvement of host cell protease(s) in the production of HAV VP1.  相似文献   

3.
Virus assembly represents one of the last steps in the retrovirus life cycle. During this process, Gag polyproteins assemble at specific sites within the cell to form viral capsids and induce membrane extrusion (viral budding) either as assembly progresses (type C virus) or following formation of a complete capsid (type B and type D viruses). Finally, the membrane must undergo a fusion event to pinch off the particle in order to release a complete enveloped virion. Structural elements within the MA region of the Gag polyprotein define the route taken to the plasma membrane and direct the process of virus budding. Results presented here suggest that a distinct region of Gag is necessary for virus release. The pp24 and pp16 proteins of the type D retrovirus Mason-Pfizer monkey virus (M-PMV) are phosphoproteins that are encoded in the gag gene of the virus. The pp16 protein is a C-terminally located cleavage product of pp24 and contains a proline-rich motif (PPPY) that is conserved among the Gag proteins of a wide variety of retroviruses. By performing a functional analysis of this coding region with deletion mutants, we have shown that the pp16 protein is dispensable for capsid assembly but essential for virion release. Moreover, additional experiments indicated that the virus release function of pp16 was abolished by the deletion of only the PPPY motif and could be restored when this motif alone was reinserted into a Gag polyprotein lacking the entire pp16 domain. Single-amino-acid substitutions for any of the residues within this motif confer a similar virion release-defective phenotype. It is unlikely that the function of the proline-rich motif is simply to inhibit premature activation of protease, since the PPPY deletion blocked virion release in the context of a protease-defective provirus. These results demonstrate that in type D retroviruses a PPPY motif plays a key role in a late stage of virus budding that is independent of and occurs prior to virion maturation.  相似文献   

4.
We studied the oligomeric properties of betaretroviral nonmyristoylated matrix protein (MA) and its R55F mutant from the Mason-Pfizer monkey virus in solution by means of chemical crosslinking and NMR spectroscopy. By analyzing crosslinked products and using concentration-dependent NMR chemical shift mapping, we have proven that the wild-type (WT) MA forms oligomers in solution. Conversely, no oligomerization was observed for the R55F mutant. Structural comparison of MAs explained their different behaviors in solution, concluding that the key residues involved in intermonomeric interaction are exposed in the WT MA but buried in the mutant, preventing the oligomerization of R55F. The final model of oligomerization of the WT MA was derived by concerted use of chemical shift mapping and diffusion-ordered spectroscopy measured on a set of protein samples with varying concentrations. We found that the Mason-Pfizer monkey virus WT MA exists in a monomer-dimer-trimer equilibrium in solution, with the corresponding dissociation constants of 2.3  and 0.24 mM, respectively. Structures of the oligomers calculated with HADDOCK software are closely related to the structures of other retroviral MA trimers.  相似文献   

5.
Mason-Pfizer monkey virus (M-PMV), the prototypical type D retrovirus, assembles immature capsids within the cytoplasm of the cell prior to plasma membrane interaction. Several mutants of M-PMV Gag have been described which display altered transport, assembly, or both. In this report, we describe the use of an in vitro synthesis and assembly system to distinguish between defects in intracellular transport and the process of assembly itself for two previously described gag gene mutants. Matrix domain mutant R55W converts the type D morphogenesis of M-PMV particles into type C and has been hypothesized to alter the transport of Gag, redirecting it to the plasma membrane where assembly subsequently occurs. We show here that R55W can assemble in both the in vitro translation-assembly system and within inclusion bodies in bacteria and thus has retained the capacity to assemble in the cytoplasm. This supports the concept that R55 is located within a domain responsible for the transport of Gag to an intracellular site for assembly. In contrast, deletions within the p12 domain of M-PMV Gag had previously been shown to affect the efficiency of particle formation such that under low-level expression conditions, Gag would fail to assemble. We demonstrate here that the efficiency of assembly in the in vitro system mirrors that seen in cells under expression conditions similar to that of an infection. These results argue that the p12 domain of this D-type retrovirus plays a critical role in the membrane-independent assembly of immature capsids.  相似文献   

6.
7.
8.
9.
10.
11.
How retroviral Gag proteins recognize the packaging signals (Psi) on their genomic RNA (gRNA) is a key question that we addressed here using Mason-Pfizer monkey virus (MPMV) as a model system by combining band-shift assays and footprinting experiments. Our data show that Pr78Gag selects gRNA against spliced viral RNA by simultaneously binding to two single stranded loops on the MPMV Psi RNA: (1) a large purine loop (ssPurines), and (2) a loop which partially overlaps with a mostly base-paired purine repeat (bpPurines) and extends into a GU-rich binding motif. Importantly, this second Gag binding site is located immediately downstream of the major splice donor (mSD) and is thus absent from the spliced viral RNAs. Identifying elements crucial for MPMV gRNA packaging should help in understanding not only the mechanism of virion assembly by retroviruses, but also facilitate construction of safer retroviral vectors for human gene therapy.  相似文献   

12.
Sindbis virus core protein (SCP) has been isolated from virus and crystallized. The X-ray crystallographic structure showed that the amino-terminal 113 residues appeared to be either disordered or truncated during crystallization and that the carboxy-terminal residues 114 to 264 had a chymotrypsin-like structure. The carboxy-terminal residues 106 to 264 and 106 to 266 of SCP have now been expressed inEscherichia coli. Most crystal forms of the truncated proteins were isomorphous with those of the virally extracted protein. There are only small structural differences between the truncated recombinant protein and the ordered part of the wild-type virus-extracted protein. Hence,E. coli-expressed SCP can be used to study proteolytic properties and the contribution of SCP to nucleocapsid assembly, interaction with the E2 glycoprotein and interaction with RNA.The same dimer that was found in two different crystal forms of the virus-extracted SCP was present also in some of the crystals of the truncated recombinant protein. The monomer – monomer interface is maintained by two pairs of hydrogen bonds and by hydrophobic interactions. Removal of the hydrogen bonds by single substitutions did not prevent dimer formation. However, a mutation that reduced the hydrophobic contacts did inhibit dimer formation.The wild-type truncated SCP is active inE. coli, as evidenced by proteolytic processing of a series of progressively longer precursors that extend beyond residue 264. Unlike the virus-extracted capsid protein, theE. coli-expressed SCP described here is terminated following the carboxy-terminal residue and, therefore, does not require autocatalysis. Nevertheless, theE. coli-expressed protein folds with the carboxy-terminal tryptophan residue in the specificity pocket. Two crystallographically independent molecules of SCP(106 to 266), which had two additional downstream residues and had the essential S215 mutated to alanine, showed two distinct modes of binding the uncleaved carboxy-terminal residues. These may represent successive steps of binding substrate prior to catalytic cleavage.Refinement of the various crystal structures of SCP showed that the amino-terminal arm from residues 107 to 113 was not disordered, but is associated with neighboring molecules. Residues 108 to 111 bind into a hydrophobic pocket composed primarily of Y180, W247 and F166. It had been shown that the double mutant (Y180S; E183G), with the Y180S substitution in this pocket, produced a large number of non-infectious virions, possibly because of modification in the interaction of the glycoprotein spikes with core proteins. The crystal structure of this double mutant showed that there was a large positional change in the side-chain of W247, which moved into the space created by the replacement of Y180 with serine. These conformational changes may alter the stability of the virion and, thus, regulate its functional requirements during cell entry.  相似文献   

13.
14.
Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.  相似文献   

15.
Hepatitis C virus is a blood-borne virus that typically establishes a chronic infection in the liver, which often results in cirrhosis and hepatocellular carcinoma. Progress in understanding the complete virus life cycle has been greatly enhanced by the recent availability of a tissue culture system that produces infectious virus progeny. Thus, it is now possible to gain insight into the roles played by viral components in assembly and egress and the cellular pathways that contribute to virion formation. This minireview describes the key determining viral and host factors that are needed to produce infectious virus.  相似文献   

16.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   

17.
18.
Flock house virus (FHV) is a small icosahedral insect virus with a bipartite, messenger-sense RNA genome. Its T=3 icosahedral capsid is initially assembled from 180 subunits of a single type of coat protein, capsid precursor protein alpha (407 amino acids). Following assembly, the precursor particles undergo a maturation step in which the alpha subunits autocatalytically cleave between Asn363 and Ala364. This cleavage generates mature coat proteins beta (363 residues) and gamma (44 residues) and is required for acquisition of virion infectivity. The X-ray structure of mature FHV shows that gamma peptides located at the fivefold axes of the virion form a pentameric helical bundle, and it has been suggested that this bundle plays a role in release of viral RNA during FHV uncoating. To provide experimental support for this hypothesis, we generated mutant coat proteins that carried deletions in the gamma region of precursor protein alpha. Surprisingly, we found that these mutations interfered with specific recognition and packaging of viral RNA during assembly. The resulting particles contained large amounts of cellular RNAs and varying amounts of the viral RNAs. Single-site amino acid substitution mutants showed that three phenylalanines located at positions 402, 405, and 407 of coat precursor protein alpha were critically important for specific recognition of the FHV genome. Thus, in addition to its hypothesized role in uncoating and RNA delivery, the C-terminal region of coat protein alpha plays a significant role in recognition of FHV RNA during assembly. A possible link between these two functions is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号