首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Polar transport of the plant hormone auxin is regulated at the cellular level by inhibition of efflux from a plasma membrane (PM) carrier. Binding of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to a regulatory site associated with the carrier has been characterized, but the NPA-binding protein(s) have not been identified. Experimental disparities between levels of high-affinity NPA binding and auxin transport inhibition can be explained by the presence of a low-affinity binding site and in vivo hydrolysis of NPA. In Arabidopsis, colocalization of NPA amidase and aminopeptidase (AP) activities, inhibition of auxin transport by artificial beta-naphthylamide substrates, and saturable displacement of NPA by the AP inhibitor bestatin suggest that PM APs may be involved in both low-affinity NPA binding and hydrolysis. We report the purification and molecular cloning of NPA-binding PM APs and associated proteins from Arabidopsis. This is the first report of PM APs in plants. PM proteins were purified by gel permeation, anion exchange, and NPA affinity chromatography monitored for tyrosine-AP activity. Lower affinity fractions contained two orthologs of mammalian APs involved in signal transduction and cell surface-extracellular matrix interactions. AtAPM1 and ATAPP1 have substrate specificities and inhibitor sensitivities similar to their mammalian orthologs, and have temporal and spatial expression patterns consistent with previous in planta histochemical data. Copurifying proteins suggest that the APs interact with secreted cell surface and cell wall proline-rich proteins. AtAPM1 and AtAPP1 are encoded by single genes. In vitro translation products of ATAPM1 and AtAPP1 have enzymatic activities similar to those of native proteins.  相似文献   

2.
Hydrolytic activities characteristic for different aminopeptidases were detected in the egg-white of unfertilized chicken eggs, and one aminopeptidase was isolated in an electrophoretically homogeneous form. The isolated aminopeptidase preferentially hydrolyzed bonds of alpha-glutamyl residue at the NH(2)-end of synthetic substrates and peptides. The enzyme is a dimer with an M(r) of 320,000 and pI of 4.2. Its optimal pH and temperature are 7.6 and 60 degrees C, respectively. EDTA, amastatin, and N-bromosuccinimide are inhibitors, while Ca2++ and Mn2+ are activators of the enzyme Ca2+ also stabilizes the enzyme. According to the observed properties, the isolated chicken egg-white aminopeptidase belongs to the glutamyl aminopeptidases.  相似文献   

3.
Since both aminopeptidases and angiotensin I-converting enzyme are reported to degrade circulating enkephalins, we have examined the degradation of low-molecular-weight opioid peptides by a vascular plasma membrane-enriched fraction previously shown to contain both angiotensin I-converting enzyme (EC 3.4.15.1) and aminopeptidase M (EC 3.4.11.2). Except for an enkephalin analog resistant to amino-terminal hydrolysis, [D-Ala2]enkephalin, the purified vascular plasma membrane preferentially degraded low-molecular-weight opioids by hydrolysis of the N-terminal Tyr-1--Gly-2 bond. Enkephalin degradation was optimal at pH 7.0 and was inhibited by the aminopeptidase inhibitors amastatin (I50 = 0.08 microM), bestatin (9.0 microM) and puromycin (80 microM). Maximal rates of hydrolysis, calculated per mg plasma membrane protein, were highest for the shorter peptides (18.3, 15.6 and 16.6 nmol/min per mg for Met5-enkephalin, Leu5-enkephalin and Leu5-enkephalin-Arg6, respectively) and decreased with increasing peptide length (0.7 nmol/min per mg for dynorphin (1-13)). No significant hydrolysis of beta- and gamma-endorphin was detected. Km values decreased significantly with increasing peptide length (Km = 72.9 +/- 2.7, 43.6 +/- 4.7 and 21.4 +/- 0.9 microM for Met5-enkephalin, Leu5-enkephalin-Arg6 and Met5-enkephalin-Arg6-Phe7, respectively). However, no further decreases were seen with even larger sequences, i.e., dynorphin(1-13). Other peptides hydrolyzed by the plasma membrane aminopeptidase (angiotensin III, kallidin and hepta(5-11)-substance P) inhibited enkephalin degradation in a competitive manner. Thus, localization, specificity and kinetic data are consistent with identification of aminopeptidase M as a vascular enzyme with the capacity to differentially metabolize low-molecular-weight opioid peptides within the microenvironment of vascular cell surface receptors. Such differential metabolism may play a role in modulating the vascular effects of peripheral opioids.  相似文献   

4.
Nodule extracts prepared from Glycine max var Woodworth possessed endopeptidase, aminopeptidase, and carboxypeptidase activities. Three distinct endopeptidase activities could be resolved by disc-gel electrophoresis at pH 8.8. According to their order of increasing electrophoretic mobility, the first of these enzymes hydrolyzed azocasein and n-benzoyl-l-Leu-beta-naphthylamide, while the second hydrolyzed n-benzoyl-l-Arg-beta-naphthylamine (Bz-l-Arg-betaNA), n-benzoyl-l-Arg-p-nitroanilide (Bz-l-Arg-pNA), and azocasein. The third endopeptidase hydrolyzed Bz-l-Arg-betaNA, Bz-l-Arg-pNA, and hemoglobin. Fractions of these enzymes extracted from electrophoresis gels were shown to have pH optima from 7.5 to 9.8. All of the endopeptidases were completely inhibited by diisopropylphosphorofluoridate, demonstrating that they were serine proteases.Aminopeptidase activity was measured using amino acyl-beta-naphthylamides. Electrophoresis of nodule extracts at pH 6.8 resolved the aminopeptidase activity of nodule extracts into at least four fractions based on mobility and on activities toward amino acyl-beta-naphthylamides. The major activity of two of the aminopeptidases was directed toward l-Leu- and l-Met-beta-naphthylamide, while the other two aminopeptidases exhibited broader specificity and were capable of hydrolyzing a large number of amino acyl-beta-naphthylamides. Two of the aminopeptidases extracted from electrophoresis gels were classified as thiol type enzymes, and all four aminopeptidases had neutral to basic pH optima.  相似文献   

5.
To evaluate the functional role of glutamyl and aspartyl aminopeptidases, their soluble and membrane-bound activities were measured simultaneously in several tissues of normal mice using arylamide derivatives as substrates. Although the soluble aspartyl aminopeptidase activity showed its highest levels in the testicle, the rest of the activities presented their highest levels in the kidney. Different patterns of distribution were observed for glutamyl and aspartyl aminopeptidase activities and also for soluble and membrane-bound aspartyl aminopeptidase activities. However no major differences were observed between soluble and membrane-bound glutamyl aminopeptidase activities. This unequal distribution suggests that the use of arylamide derivatives as substrates is a sensitive method that distinguishes between these enzymatic activities. The results also suggest different functions for soluble and membrane-bound aspartyl aminopeptidase activities, and for glutamyl and aspartyl aminopeptidase activities.  相似文献   

6.
A soluble aminopeptidase distinct from two enzymes described previously was isolated from human placenta and some of its properties were investigated. The three aminopeptidases were separated by DEAE-cellulose chromatography. The newly found aminopeptidase exhibits specific hydrolysis of leucine derivatives among various synthetic substrates. However, a broad substrate specificity was observed toward some natural bioactive peptides.  相似文献   

7.
Succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin (Suc-LLVY-AMC), a fluorogenic endopeptidase substrate, is used to detect 20 S proteasomal activity from Archaea to mammals. An o-phenanthroline-sensitive Suc-LLVY-AMC hydrolyzing activity was detected in Escherichia coli although it lacks 20 S proteasomes. We identified PepN, previously characterized as the sole alanine aminopeptidase in E. coli, to be responsible for the hydrolysis of Suc-LLVY-AMC. PepN is an aminoendopeptidase. First, extracts from an ethyl methanesulfonate-derived PepN mutant, 9218, did not cleave Suc-LLVY-AMC and L-Ala-para-nitroanilide (pNA). Second, biochemically purified PepN cleaves a wide variety of both aminopeptidase and endopeptidase substrates, and L-Ala-pNA is cleaved more efficiently than other substrates. Studies with bestatin, an aminopeptidase-specific inhibitor, suggest differences in the mechanisms of cleavage of aminopeptidase and endopeptidase substrates. Third, PepN hydrolyzes whole proteins, casein and albumin. Finally, an E. coli strain with a targeted deletion in PepN also lacks the ability to cleave Suc-LLVY-AMC and L-Ala-pNA, and expression of wild type PepN in this mutant rescues both activities. In addition, we identified a low molecular weight Suc-LLVY-AMC-cleaving peptidase in Mycobacterium smegmatis, a eubacteria harboring 20 S proteasomes, to be an aminopeptidase homologous to E. coli PepN, by mass spectrometry analysis. "Sequence-based homologues" of PepN include well characterized aminopeptidases, e.g. Tricorn interacting factors F2 and F3 in Archaea and puromycin-sensitive aminopeptidase in mammals. However, our results suggest that eubacterial PepN and its homologues displaying aminoendopeptidase activities may be "functionally similar" to enzymes important in downstream processing of proteins in the cytosol: Tricorn-F1-F2-F3 complex in Archaea and TPPII/Multicorn in eukaryotes.  相似文献   

8.
Crude lysosomal preparations from a cultured human skin fibroblast line were found to contain significant levels of a neutral pH hydrolase activity towards glycine--phenylalanine--beta-naphthylamide (NA), a substrate normally used for the assay of lysosomal dipeptidyl aminopeptidase I. However, the activity was chloride ion insensitive, nonlatent, and inhibitable by cationic detergents and amino acids. Assays of substrate selectivity, relative substrate affinity, pH and anion and cation sensitivity indicated the activity to be distinct from dipeptidyl aminopeptidases I (chloride-dependent hydrolysis of Pro-Phe-, Gly-Phe-, Gly-Arg-, and Pro-Arg-NA's at acid pH), II (Lys-Ala-NA hydrolysis), III (Arg-Arg-NA hydrolysis), and IV (Gly-Pro-NA hydrolysis). The lysosomal preparations also contained significant activity towards several amino acid--naphthylamides, notably Arg-NA. Only dipepidyl aminopeptidase I activity showed sensitivity to chloride anions, both dipeptidyl aminopeptidases I and II showed substantial latency, and none of the activities displayed a significant metal cation dependent.  相似文献   

9.
Purified human serum biotinidase exhibited amino-exo-peptidase activity. Enkephalins and dynorphin A (less than 10-mer) seemed to be the most appropriate substrates among various physiological peptides in terms of the kcat/Km values. Similar kcat/Km values were obtained for both biocytin (biotinyllysine) and these opioid-neuropeptides. Neuro-oligo-peptides ranging from 2-mer to 18-mer were hydrolyzed. The presence of amino group at the carboxyl terminal position increased the kcat/Km value by decreasing the Km value. The results of inhibition studies using various kinds of antibiotic inhibitors, metals, and chelating agents indicated that enkephalin hydrolysis was mediated by the peptide-hydrolyzing center probably containing Zn ions. This aminopeptidase activity was uniquely inhibited by a vitamin of biocytin. The reason for the high content of biotinidase activity in serum may be related to the binary function of this enzyme; i.e., biocytin hydrolyzing amidase and enkephalin hydrolyzing aminopeptidase functions.  相似文献   

10.
We previously obtained evidence for intrinsic aminopeptidase activity for leukotriene (LT)A4 hydrolase, an enzyme characterized to specifically catalyse the hydrolysis of LTA4 to LTB4, a chemotactic compound. From a sequence homology search between LTA4 hydrolase and several aminopeptidases, it became clear that they share a putative active site for known aminopeptidases and a zinc binding domain. Thus, Glu-297 of LTA4 hydrolase is a candidate for the active site of its aminopeptidase activity, while His-296, His-300 and Glu-319 appear to constitute a zinc binding site. To determine whether or not this putative active site is also essential to LTA4 hydrolase activity, site-directed mutagenesis experiments were carried out. Glu-297 was mutated into 4 different amino acids. The mutant E297Q (Glu changed to Gln) conserved LTA4 hydrolase activity but showed little aminopeptidase activity. Other mutants at Glu-297 (E297A, E297D and E297K) showed markedly reduced amounts of both activities. It is thus proposed that either a glutamic or glutamine moiety at 297 is required for full LTA4 hydrolase activity, while the free carboxylic acid of glutamic acid is essential for aminopeptidase.  相似文献   

11.
The lipoxygenase (LOX) pathway was proposed to compete with hydrolysis and be partly responsible for the metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). Treatment of Arabidopsis seedlings with lauroylethanolamide (NAE 12:0) resulted in elevated levels of PU-NAE species, and this was most pronounced in plants with reduced NAE hydrolase activity. Enzyme activity assays revealed that NAE 12:0 inhibited LOX-mediated oxidation of PU lipid substrates in a dose-dependent and competitive manner. NAE 12:0 was 10-20 times more potent an inhibitor of LOX activities than lauric acid (FFA 12:0). Furthermore, treatment of intact Arabidopsis seedlings with NAE 12:0 (but not FFA 12:0) substantially blocked the wound-induced formation of jasmonic acid (JA), suggesting that NAE 12:0 may be used in planta to manipulate oxylipin metabolism.  相似文献   

12.
Activities of plasma membrane proteinases such as angiotensin-converting enzyme (ACE), aminopeptidases, and dipeptidyl peptidase IV (DPP-IV) were determined in lymphoid cells of various immunological phenotype which were obtained from 30 patients with lymphoproliferative diseases. The enzyme activities significantly varied depending on the immunological phenotype and stage of cell differentiation, but no correlation was found between activities of ACE, DPP-IV, and aminopeptidases in the cells of different type. The cell lysates studied contained at least two classes of aminopeptidases: metal- and sulfhydryl-dependent enzymes. A sulfhydryl-dependent aminopeptidase with activity optimum at pH 8. 5-9.0 was found for the first time and is suggested to be from a poorly studied aminopeptidase family. In addition to ACE, lysates of leukemic T- and B-cells were found to contain an inhibitor of ACE which was not previously described for these cells.  相似文献   

13.
Methionine aminopeptidase (MetAP) catalyzes the removal of methionine from newly synthesized polypeptides. MetAP carries out this cleavage with high precision, and Met is the only natural amino acid residue at the N terminus that is accepted, although type I and type II MetAPs use two different sets of residues to form the hydrophobic S1 site. Characteristics of the S1 binding pocket in type I MetAP were investigated by systematic mutation of each of the seven S1 residues in Escherichia coli MetAP type I (EcMetAP1) and human MetAP type I (HsMetAP1). We found that Tyr-65 and Trp-221 in EcMetAP1, as well as the corresponding residues Phe-197 and Trp-352 in HsMetAP1, were essential for the hydrolysis of a thiopeptolide substrate, Met-S-Gly-Phe. Mutation of Phe-191 to Ala in HsMetAP1 caused inactivity in contrast to the full activity of EcMetAP1(Y62A), which may suggest a subtle difference between the two type I enzymes. The more striking finding is that mutation of Cys-70 in EcMetAP1 or Cys-202 in HsMetAP1 opens up the S1 pocket. The thiopeptolides Leu-S-Gly-Phe and Phe-S-Gly-Phe, with previously unacceptable Leu or Phe as the N-terminal residue, became efficient substrates of EcMetAP1(C70A) and HsMetAP1(C202A). The relaxed specificity shown in these S1 site mutants for the N-terminal residues was confirmed by hydrolysis of peptide substrates and inhibition by reaction products. The structural features at the enzyme active site will be useful information for designing specific MetAP inhibitors for therapeutic applications.  相似文献   

14.
We expressed an active form of CtCel5E (a bifunctional cellulase/xylanase from Clostridium thermocellum), performed biochemical characterization, and determined its apo- and ligand-bound crystal structures. From the structures, Asn-93, His-168, His-169, Asn-208, Trp-347, and Asn-349 were shown to provide hydrogen-bonding/hydrophobic interactions with both ligands. Compared with the structures of TmCel5A, a bifunctional cellulase/mannanase homolog from Thermotoga maritima, a flexible loop region in CtCel5E is the key for discriminating substrates. Moreover, site-directed mutagenesis data confirmed that His-168 is essential for xylanase activity, and His-169 is more important for xylanase activity, whereas Asn-93, Asn-208, Tyr-270, Trp-347, and Asn-349 are critical for both activities. In contrast, F267A improves enzyme activities.  相似文献   

15.
Enkephalin-containing polypeptides derived from pro-enkephalin A, pro-enkephalin B, or pro-opiomelanocortin were inhibitors of enkephalin degradation by aminoenkephalinases purified from cytosol or membranes. Of the peptides, Arg°-Met-enkephalin was the most potent inhibitor for the aminoenkephalinases, with an IC50 of about 0.6 μM, it was more effective than bestatin (IC50=0.8–1.0 μM). This inhibition was partly due to substrate competition. Arg°-Met-enkephalin was hydrolyzed by aminoenkephalinases to form Arg, Tyr, and Gly-Gly-Phe-Met in a substrate-inhibited manner. The hexapeptide also inhibited the breakdown of Arg- and Tyr-β-naphthylamide by the membrane aminoenkephalinase. Since Arg°-Met-enkephalin did not inhibit leucine aminopeptidase, it was a more selective inhibitor than bestatin of Met-enkephalin breakdown by aminopeptidases. Arg°-Met-enkephalin inhibited enkephalin breakdown by synaptosomal plasma membranes but not by brain slices. Our data suggest that in addition to their possible role as opioids, the enkephalin-containing polypeptides may be regulators of enkephalin levels.  相似文献   

16.
The possibility that exopeptidases, i.e. aminopeptidases and carboxypeptidases, in addition to the previously studied endopeptidase might also be developmentally regulated in daylily petals was examined. The level of leucine aminopeptidase and endopeptidase activities changed after the flower was fully open while that of carboxypeptidase activity remained relatively unchanged throughout senescence. Leucine aminopeptidase activity seemed to increase after the flower was fully open and peaked several hours earlier than endopeptidase did. Taken together, it is postulated that leucine aminopeptidase might play a role in protein turnover during flower opening and in the initiation of protein hydrolysis associated with petal senescence while the endopeptidase could be responsible for the breakdown of the bulk of proteins at the later stages. The drop in leucine aminopeptidase activity associated with the onset of daylily petal senescence was effectively halted by a cycloheximide treatment of cut daylily flowers for 24 h which was previously shown to prolong the vase life of the flowers and prevent protein loss from the petals. Apart from both being developmentally regulated in daylily petals, the leucine aminopeptidase activity and the previously studied endopeptidase are different in several aspects. They appear to have different pH optima, 8 for leucine aminopeptidase and 6.2 for endopeptidase. Unlike the endopeptidase activity, no new leucine aminopeptidase isozymes appeared during petal senescence, and the leucine aminopeptidase did not appear to belong to the cysteine class of proteolytic enzymes.  相似文献   

17.
Permeabilized tomato cells were cross-linked with glutaraldehyde in the absence of a carrier. The immobilized cells demonstrated significantly lower aminopeptidase (AP) activities than untreated control cells. However, when immobilized with pectate and alginate gels, the tomato cells retained their AP activities. A new method for the determination of the activity of both extra- and intracellular AP was developed, based on enzyme-catalyzed hydrolysis of a series of synthetic beta-naphthylamides (betaNA) of the L-amino acids Ala, Arg, Leu, Pro, Tyr, or of the synthetic beta-methoxynaphthylamides (betaMNA) of Ala and Arg. Extracellular AP--produced by calli, cell-suspension culture, or seedlings of tomato cells grown on agar--hydrolyzed these peptidic substrates to the free naphthalene amines and amino acids. Staining with Fast Garnet GBC salt under formation of bright reddish azo dyes readily allowed the determination of AP activities. For the tomato-cell suspension, the intracellular activity accounted for 91.3-93.9% of the total activity, and the extracellular one for 6.1-8.7%, respectively. Our method permits the rapid, simple, and specific determination of plant aminopeptidases.  相似文献   

18.
During prolonged storage, solid naphthylphthalamic acid (NPA) turns purple due to the formation of the dye, 1,1'-azonaphthylene (ANA). ANA forms oxidatively from two molecules of the NPA degradation product, α-naphthylamine (αNA). At concentrations ≥ 30 μM, solutions of `purple NPA' stained Arabidopsis thaliana seedlings specifically at the hypocotyl-root transition zone and other regions. Staining was caused by the aggregation of ANA and could be reconstituted using undegraded NPA and either αNA or ANA. Studies with [3H]-NPA confirmed that NPA is localized at sites of staining. Genestein, curcumin and quercitin inhibited the staining reaction. Liquid chromatography-mass spectral (LC-MS) analysis of the ANA in the stained tissue indicated that ANA is synthesized at sites of staining. It was postulated that the amide bond of NPA is enzymatically cleaved, producing αNA. The αNA combines to form ANA, which aggregates to yield an insoluble precipitate. Consistent with this hypothesis, NPA amidase activity was detected in purified plasma membranes. The NPA amidase activity was activated by 500 μM MnCl2 and inhibited by phloretin, genestein, quercitin, bestatin and EDTA.  相似文献   

19.
The specificity of the synthetic substrate Gly-[L-Asp]4-L-Lys 2-naphthylamide originally developed for the assay of enteropeptidase (EC 3.4.21.9), was investigated with partially purified aminopeptidase. Our results indicate that, not only enteropeptidase, but also the concerted action of the aminopeptidases of the rat small intestine, can rapidly release 2-naphthylamine from the substrate. A previously undescribed, highly active, dipeptidylaminopeptidase, which hydrolyses a Gly-Asp dipeptide from the N-terminus of the substrate, was detected in rat small intestine. The resulting [L-Asp]3-L-Lys 2-naphthylamide fragment is then degraded by a combination of aminopeptidase A and N to yield free 2-naphthylamine. Thus the present substrate cannot be regarded as being specific for enteropeptidase, and its use leads to an over-estimation of enteropeptidase activity in homogenates and extracts of intestinal tissue. In order to prevent this non-specific hydrolysis by aminopeptidases, stereoisomeric substrates with the sequence L-Ala-D-Asp-[L-Asp]3-L-Lys methyl ester, D-Ala-[L-Asp]4-L-Lys methyl ester and L-Ala-[Asp]4-L-Lys methyl ester were synthesized and tested as alternative substrates by their ability to inhibit the enteropeptidase-catalysed activation of trypsinogen.  相似文献   

20.
Two fish aminopeptidases designated as aminopeptidases I and II were purified by DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and isoelectric focusing. The final preparations of enzymes I and II were judged nearly homogenous by polyacrylamide gel I, electrophoresis. The molecular weights of enzymes I and II were determined by gel filtration to be 370,000 and 320,000, respectively. The isoelectric points were 4.1 (I) and 4.8 (II), Both enzymes were inhibited by EDTA and activated by Co++. Bestatin could inhibit enzyme I but not enzyme II. Enzymes I and II rapidly hydrolyzed not only synthetic substrates containing alanine or leucine but also di-, tri-, and tetra-alanine. Judged from all of these properties, sardine aminopeptidases resemble human alanine aminopeptidase. Enzyme I retained more than 70% of its original activity in 15% NaCl, suggesting the enzyme participates in hydrolyzing fish proteins and peptides during fish sauce production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号