首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A model for the transmission of dengue fever in a constant human population and variable vector population is discussed. A complete global analysis is given, which uses the results of the theory of competitive systems and stability of periodic orbits, to establish the global stability of the endemic equilibrium. The control measures of the vector population are discussed in terms of the threshold condition, which governs the existence and stability of the endemic equilibrium.  相似文献   

2.
Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R(0), may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.  相似文献   

3.

Background

Dengue is the most prevalent mosquito-borne virus, and potentially fatal dengue hemorrhagic fever (DHF) occurs mainly in secondary infections. It recently was hypothesized that, due to the presence of cross-immunity, the relationship between the incidence of DHF and transmission intensity may be negative at areas of intense transmission. We tested this hypothesis empirically, using vector abundance as a surrogate of transmission intensity.

Methodology/Principal Findings

House Index (HI), which is defined as the percentage of households infested with vector larvae/pupae, was obtained from surveys conducted on one million houses in Thailand, between 2002 and 2004. First, the utility of HI as a surrogate of transmission intensity was confirmed because HI was correlated negatively with mean age of DHF in the population. Next, the relationship between DHF incidence and HI was investigated. DHF incidence increased only up to an HI of about 30, but declined thereafter. Reduction of HI from the currently maximal level to 30 would increase the incidence by more than 40%. Simulations, which implemented a recently proposed model for cross-immunity, generated results that resembled actual epidemiological data. It was predicted that cross-immunity generates a wide variation in incidence, thereby obscuring the relationship between incidence and transmission intensity. The relationship would become obvious only if data collected over a long duration (e.g., >10 years) was averaged.

Conclusion

The negative relationship between DHF incidence and dengue transmission intensity implies that in regions of intense transmission, insufficient reduction of vector abundance may increase long-term DHF incidence. Further studies of a duration much longer than the present study, are warranted.  相似文献   

4.
在自然界存在两种登革热传播模式:人-伊蚊-人循环,蚊媒是埃及伊蚊与白纹伊蚊。猴-伊蚊-猴循环,蚊媒是白纹伊蚊与白雪伊蚊群。我国学者首先于1975年从无输入性病例的我国西南边疆山林地区的白纹伊蚊体内分离到登革热病毒4型,白纹伊蚊承担两种传播模式的中介。本研究介绍了埃及伊蚊与白纹伊蚊的生态习性与全球及在中国的分布。认为在我国厦门地区迄今为止还未曾发现过埃及伊蚊的存在,也简介了沃尔巴克体新技术防控蚊媒研究的进展。  相似文献   

5.
Prion protein is central to the control of development of all transmissible spongiform encephalopathies. Controversy exists as to whether the protein itself is responsible for disease manifestation, in one of perhaps several isoforms, or whether an additional informational molecule must be involved in conjunction with the protein. Recent studies have been trying to resolve these issues.  相似文献   

6.

Background  

Dengue is a disease which is now endemic in more than 100 countries of Africa, America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes) and exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted by one of the four different viruses. Moreover, immunity is acquired only to the serotype contracted and a contact with a second serotype becomes more dangerous.  相似文献   

7.
We formulate a non-linear system of differential equations that models the dynamics of transmission of dengue fever. We consider vertical and mechanical transmission in the vector population, and study the effects that they have on the dynamics of the disease. A qualitative analysis as well as some numerical examples are given for the model.  相似文献   

8.
  1. Download : Download high-res image (135KB)
  2. Download : Download full-size image
  相似文献   

9.
Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.  相似文献   

10.
According to recent statistics, 96 million apparent dengue infections were estimated worldwide in 2010. This figure is by far greater than the WHO prediction which indicates the rapid spread of this disease posing a growing threat to the economy and a major challenge to clinicians and health care services across the globe particularly in the affected areas.This article aims at bringing to light the current epidemiological and clinical status of the dengue fever. The relationship between genetic mutations, single nucleotide polymorphism (SNP) and the pathophysiology of disease progression will be put into perspective. It will also highlight the recent advances in dengue vaccine development.Thus far, a significant progress has been made in unraveling the risk factors and understanding the molecular pathogenesis associated with the disease. However, further insights in molecular features of the disease and the development of animal models will enormously help improving the therapeutic interventions and potentially contribute to finding new preventive measures for population at risk.  相似文献   

11.
The relationship of this country with dengue has been long and intense. The first recorded epidemic of clinically dengue-like illness occurred at Madras in 1780 and the dengue virus was isolated for the first time almost simultaneously in Japan and Calcutta in 1943–1944. After the first virologically proved epidemic of dengue fever along the East Coast of India in 1963–1964, it spread to allover the country. The first full-blown epidemic of the severe form of the illness, the dengue haemorrhagic fever/dengue shock syndrome occurred in North India in 1996. Aedes aegypti is the vector for transmission of the disease. Vaccines or antiviral drugs are not available for dengue viruses; the only effective way to prevent epidemic degure fever/dengue haemorrhagic fever (DF/DHF) is to control the mosquito vector, Aedes aegypti and prevent its bite. This country has few virus laboratories and some of them have done excellent work in the area of molecular epidemiology, immunopathology and vaccine development. Selected work done in this country on the problems of dengue is presented here.  相似文献   

12.
Advances in free radical research show that reactive oxygen and nitrogen oxide species, for example superoxide, nitric oxide (NO) and peroxynitrite, play an important role in the pathogenesis of different viral infections, including dengue virus. The pathogenic mechanism of dengue haemorrhagic fever (DHF) is complicated and is not clearly understood. The hallmarks of the dengue disease, the antibody-dependent enhancement, the shift from T-helper type 1 (Th1) to Th2 cytokine response and the cytokine tsunami resulting in vascular leakage can now be explained much better with the knowledge gained about NO and peroxynitrite. This paper makes an effort to present a synthesis of the current opinions to explain the pathogenesis of DHF/shock syndrome with NO on centre stage.  相似文献   

13.
We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.  相似文献   

14.

Background

Dengue infection is endemic in many regions throughout the world. While insecticide fogging targeting the vector mosquito Aedes aegypti is a major control measure against dengue epidemics, the impact of this method remains controversial. A previous mathematical simulation study indicated that insecticide fogging minimized cases when conducted soon after peak disease prevalence, although the impact was minimal, possibly because seasonality and population immunity were not considered. Periodic outbreak patterns are also highly influenced by seasonal climatic conditions. Thus, these factors are important considerations when assessing the effect of vector control against dengue. We used mathematical simulations to identify the appropriate timing of insecticide fogging, considering seasonal change of vector populations, and to evaluate its impact on reducing dengue cases with various levels of transmission intensity.

Methodology/Principal Findings

We created the Susceptible-Exposed-Infectious-Recovered (SEIR) model of dengue virus transmission. Mosquito lifespan was assumed to change seasonally and the optimal timing of insecticide fogging to minimize dengue incidence under various lengths of the wet season was investigated. We also assessed whether insecticide fogging was equally effective at higher and lower endemic levels by running simulations over a 500-year period with various transmission intensities to produce an endemic state. In contrast to the previous study, the optimal application of insecticide fogging was between the onset of the wet season and the prevalence peak. Although it has less impact in areas that have higher endemicity and longer wet seasons, insecticide fogging can prevent a considerable number of dengue cases if applied at the optimal time.

Conclusions/Significance

The optimal timing of insecticide fogging and its impact on reducing dengue cases were greatly influenced by seasonality and the level of transmission intensity. We suggest that these factors should be considered when planning a control strategy against dengue vectors.  相似文献   

15.
Little is known of the role of human leucocyte antigen (HLA) alleles or non-HLA alleles in determining resistance, susceptibility or the severity of acute viral infections. Dengue fever (DF) and dengue haemorrhagic fever (DHF) are suitable models for immunogenetic studies, yet only superficial efforts have been made to study dengue disease to date. DF and DHF can be caused by both primary and secondary infection by any of the four serotypes of the dengue virus. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virus virulence. Variations in immune response, often associated with polymorphism in the human genome, can now be detected. Data on the influence of human genes in DF and DHF are discussed here in relation to (1) associations between HLA polymorphism and dengue disease susceptibility or resistance, (2) protective alleles influencing progression to severe disease, (3) alleles restricting CD4(+) and CD8(+) T lymphocytes, and (4) non-HLA genetic factors that may contribute to DHF evolution. Recent discoveries regarding genetic associations in other viral infections may provide clues to understanding the development of end-stage complications in dengue disease. The scanty positive data presented here indicate a need for detailed genetic studies in different ethnic groups in different countries during the acute phase of DF and DHF on a larger number of patients.  相似文献   

16.
Dengue virus (DENV) is a mosquito-borne virus belonging to the Flaviviridae family. There are 4 serotypes of DENV that cause human disease through transmission by mosquito vectors. DENV infection results in a broad spectrum of clinical symptoms, ranging from mild fever to dengue hemorrhagic fever (DHF), the latter of which can progress to dengue shock syndrome (DSS) and death. Researchers have made unremitting efforts over the last half-century to understand DHF pathogenesis. DHF is probably caused by multiple factors, such as virus-specific antibodies, viral antigens and host immune responses. This review summarizes the current progress of studies on DHF pathogenesis, which may provide important information for achieving effective control of dengue in the future.
  相似文献   

17.
During dengue virus infection a unique cytokine, cytotoxic factor (hCF), is produced that is pathogenesis-related and plays a key role in the development of dengue haemorrhagic fever (DHF). However, what regulates the adverse effects of hCF is not known. We have previously shown that anti-hCF antibodies raised in mice, neutralise the pathogenic effects of hCF. In this study we have investigated the presence and levels of hCF-autoantibodies in sera of patients with various severity of dengue illness (n=136) and normal healthy controls (n=50). The highest levels of hCF-autoantibodies (mean+/-S.D.=36+/-20 U ml(-1)) were seen in patients with mild illness, the dengue fever (DF), and 48 out of 50 (96%) of the sera were positive. On the other hand the hCF-autoantibody levels declined sharply with the development of DHF and the levels were lowest in patients with DHF grade IV (mean+/-S.D.=5+/-2 U ml(-1); P=<0.001 as compared to DF). Only one of the 13 DHF grade IV patients had an antibody level above the 'cut-off' value (mean plus 3 S.D. of the control sera). The analysis of data with respect to different days of illness further showed that the highest levels of hCF-autoantibodies were present in DF patients at >9 days of illness. Moreover, the DF patients at all time points, i.e. 1-4, 5-8 and >9 days of illness had significantly higher levels of hCF-autoantibodies (P<0.001) than patients with DHF grade I, II, III and IV. In addition DHF grade I and grade II patients had significantly more positive specimens than DHF grade III and grade IV patients at all time points. These results suggest that elevated levels of hCF-autoantibodies protect the patients against the development of severe forms of DHF and, therefore, it may be useful as a prognostic indicator.  相似文献   

18.
Dengue is becoming recognized as one of the most important vector-borne human diseases. It is predominant in tropical and subtropical zones but its geographical distribution is progressively expanding, making it an escalating global health problem of today. Dengue presents with spectrum of clinical manifestations, ranging from asymptomatic, undifferentiated mild fever, dengue fever (DF), to dengue hemorrhagic fever (DHF) with or without shock (DSS), a life-threatening illness characterized by plasma leakage due to increased vascular permeability. Currently, there are no antiviral modalities or vaccines available to treat and prevent dengue. Supportive care with close monitoring is the standard clinical practice. The mechanisms leading to DHF/DSS remains poorly understood. Multiple factors have been attributed to the pathological mechanism, but only a couple of these hypotheses are popular in scientific circles. The current discussion focuses on underappreciated factors, temperature, natural IgM, and endotoxin, which may be critical components playing roles in dengue pathogenesis.  相似文献   

19.
We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal variation in temperature and on the availability of breeding sites. We also show that the arrival date of an infected human in a susceptible population dramatically affects the distribution of the final size of epidemics and that early outbreaks have a low probability. However, early outbreaks are likely to produce large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal climatic variations.  相似文献   

20.
Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis   总被引:13,自引:0,他引:13  
Dengue virus produces a mild acute febrile illness, dengue fever (DF) and a severe illness, dengue hemorrhagic fever (DHF). The characteristic feature of DHF is increased capillary permeability leading to extensive plasma leakage in serous cavities resulting in shock. The pathogenesis of DHF is not fully understood. This paper presents a cascade of cytokines, that in our view, may lead to DHF. The main feature is the early generation of a unique cytokine, human cytotoxic factor (hCF) that initiates a series of events leading to a shift from Th1-type response in mild illness to a Th2-type response resulting in severe DHF. The shift from Th1 to Th2 is regulated by the relative levels of interferon-gamma and interleukin (IL)-10 and between IL-12 and transforming growth factor-beta, which showed an inverse relationship in patients with DF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号