首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Older adults exhibit higher morbidity and mortality from infectious diseases compared with those of the general population. The introduction and rapid spread of West Nile virus (WNV) throughout the continental United States since 1999 has highlighted the challenge of protecting older adults against emerging pathogens: to this day there is no therapy or vaccine approved for human use against West Nile encephalitis. In this study, we describe the characterization of T and B cell responses in old mice after vaccination with RepliVAX WN, a novel West Nile encephalitis vaccine based on single-cycle flavivirus particles. In adult mice, RepliVAX WN induced robust and long-lasting CD4(+) and CD8(+) T cell and Ab (B cell) responses against natural WNV epitopes, similar to those elicited by primary WNV infection. Primary and memory T and B cell responses in old mice against RepliVAX WN vaccination were significantly lower than those seen in younger mice, similar to the response of old mice to infection with WNV. Surprisingly, both the quality and the quantity of the recall Ab and T cell responses in vaccinated old mice were improved to equal or exceed those in adult animals. Moreover, these responses together (but not individually) were sufficient to protect both old and adult mice from severe WNV disease upon challenge. Therefore, at least two cycles of in vivo restimulation are needed for selection and expansion of protective lymphocytes in older populations, and live, single-cycle virus vaccines that stimulate both cellular and humoral immunity can protect older individuals against severe viral disease.  相似文献   

2.
While a large number of mosquito-transmitted alphaviruses are known to cause serious human diseases, there are no licensed vaccines that protect against alphavirus infections. The alphavirus chikungunya virus (CHIKV) has caused multiple recent outbreaks of chikungunya fever. This virus has the potential to cause a worldwide epidemic and has generated strong interest in development of a prophylactic CHIKV vaccine. We report here on the development of a potent experimental vaccine for CHIKV based on a chimeric vesicular stomatitis virus (VSV) expressing the entire CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G). These VSVΔG-CHIKV chimeras incorporated functional CHIKV glycoproteins into the viral envelope in place of VSV G. The chimeric viruses were attenuated for growth in tissue culture but could be propagated to high titers without VSV G complementation. They also generated robust neutralizing antibody and cellular immune responses to CHIKV in mice after a single dose and protected mice against CHIKV infection. VSVΔG-alphavirus chimeras could have general applicability as alphavirus vaccines.  相似文献   

3.
Chikungunya virus (CHIKV) is a mosquito-borne pathogen that is responsible for numerous large and geographical epidemics, causing millions of cases. However, there is no vaccine or therapeutics against CHIKV infection available. Interferon-alpha (IFN-α) has been shown to produce potent antiviral responses during viral infection. Herein we demonstrated the use of an adenovirus-vectored expressed mouse IFN-α (mDEF201) as a prophylactic and therapeutic treatment against CHIKV in vivo. 6-day-old BALB/c mice were pre- or post-treated intranasally with single dose of mDEF201 at 5 x 106 PFU per mouse and challenged with lethal dose of CHIKV. Complete survival protection was observed in mice upon a single dose of mDEF201 administration 1 days prior to virus challenge. Viral load in the serum and multiple organs were significantly reduced upon mDEF201 administration in a dose dependent manner as compare with adenovirus 5 vector placebo set. Histological analysis of the mice tissue revealed that mDEF201 could significantly reduce the tissue morphological abnormities, mainly infiltration of immune cells and muscle fibre necrosis caused by CHIKV infection. In addition, administration of mDEF201 at 6 hours post CHIKV challenge also showed promising inhibitory effect against viral replication and dissemination. In conclusion, single-dose of intranasal administration with mDEF201 as a prophylactic or therapeutic agent within 6 hours post CHIKV infection is highly protective against a lethal challenge of CHIKV in the murine model.  相似文献   

4.

Background

The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.

Methodology/Principal Findings

BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.

Conclusion/Significance

Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.  相似文献   

5.
We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing.  相似文献   

6.
The induction of human immunodeficiency virus (HIV)-specific T-cell responses is widely seen as critical to the development of effective immunity to HIV type 1 (HIV-1). Plasmid DNA and recombinant fowlpox virus (rFPV) vaccines are among the most promising safe HIV-1 vaccine candidates. However, the immunity induced by either vaccine alone may be insufficient to provide durable protection against HIV-1 infection. We evaluated a consecutive immunization strategy involving priming with DNA and boosting with rFPV vaccines encoding common HIV-1 antigens. In mice, this approach induced greater HIV-1-specific immunity than either vector alone and protected mice from challenge with a recombinant vaccinia virus expressing HIV-1 antigens. In macaques, a dramatic boosting effect on DNA vaccine-primed HIV-1-specific helper and cytotoxic T-lymphocyte responses, but a decline in HIV-1 antibody titers, was observed following rFPV immunization. The vaccine regimen protected macaques from an intravenous HIV-1 challenge, with the resistance most likely mediated by T-cell responses. These studies suggest a safe strategy for the enhanced generation of T-cell-mediated protective immunity to HIV-1.  相似文献   

7.
We have genetically engineered an attenuated yellow fever (YF) virus to carry and express foreign antigenic sequences and evaluated the potential of this type of recombinant virus to serve as a safe and effective tumor vaccine. Live-attenuated YF vaccine is one of the most effective viral vaccines available today. Important advantages include its ability to induce long-lasting immunity, its safety, its affordability, and its documented efficacy. In this study, recombinant live-attenuated (strain 17D) YF viruses were constructed to express a cytotoxic T-lymphocyte epitope derived from chicken ovalbumin (SIINFEKL). These recombinant viruses replicated comparably to the 17D vaccine strain in cell culture and stably expressed the ovalbumin antigen, and infected cells presented the antigen in the context of major histocompatibility complex class I. Inoculation of mice with recombinant YF virus elicited SIINFEKL-specific CD8(+) lymphocytes and induced protective immunity against challenge with lethal doses of malignant melanoma cells expressing ovalbumin. Furthermore, active immunotherapy with recombinant YF viruses induced regression of established solid tumors and pulmonary metastases. Thus, recombinant YF viruses are attractive viral vaccine vector candidates for the development of therapeutic anticancer vaccines.  相似文献   

8.
The Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis. Although there are four classes of vaccines against JEV, all of them are administered by s.c or i.m injection. Here, the effectiveness of sublingual (s.l.) administration of a JEV live‐attenuated vaccine or recombinant modified vaccinia virus Ankara (MVA) vaccine, including JEV prM/E, was investigated. The mice were immunized three times i.m. or s.c. One week after the final immunization by both s.l. and i.m. routes, the titers of IgG1 induced by the recombinant MVA vaccine were higher than those induced by the live‐attenuated vaccine, whereas the titers of IgG2a induced by the live‐attenuated vaccine were higher than those induced by the recombinant MVA vaccine. However, both vaccines induced neutralizing antibodies when given by either s.l. or i.m. routes, indicating that both vaccines induce appropriate Th1 and Th2 cell responses through the s.l. and i.m. routes. Moreover, both vaccines protected against induction of proinflammatory cytokines and focal spleen white pulp hyperplasia after viral challenge. Virus‐specific IFN‐γ+ CD4+ and CD8+ T cells appeared to increase in mice immunized via both s.l. and i.m. routes. Interestingly, virus‐specific IL‐17+ CD4+ T cells increased significantly only in the mice immunized via the s.l. route; however, the increased IL‐17 did not affect pathogenicity after viral challenge. These results suggest that s.l. immunization may be as useful as i.m. injection for induction of protective immune responses against JEV by both live‐attenuated and recombinant MVA vaccines.  相似文献   

9.
An efficacious vaccine strategy must be capable of inducing strong responses of an appropriate phenotype that are long lasting and sufficiently broad to prevent pathogen escape mechanisms. In the present study, we use anti-CD25 mAb to augment vaccine-induced immunity in mice. We demonstrate that coformulation of Ab and poxviral- or adenoviral-vectored vaccines induces significantly increased T cell responses to a malaria Ag; prior anti-CD25 Ab administration was not required for this effect. Furthermore, this vaccination approach subverts immunodominant epitope hierarchies by enhancing responses to subdominant epitopes induced by recombinant modified vaccinia virus Ankara immunization. Administration of anti-CD25 with a vaccine also induces more durable immunity compared with vaccine alone; significantly higher T cell responses were observed 100 days after the primary immunization. Enhanced immunogenicity is observed for multiple vaccine types with enhanced CD4+ and CD8+ T cell responses induced by bacillus Calmette-Guérin and a recombinant subunit protein vaccine to hepatitis B virus and with multiple Ags of tumor, viral, bacterial, and parasitic origin. Vaccine strategies incorporating anti-CD25 lead to improved protection against pre-erythrocytic malaria challenge. These data underpin new strategies for the design and development of more efficacious vaccines in clinical settings.  相似文献   

10.
Influenza is an acute respiratory disease and a global health problem. Although influenza vaccines are commercially available, frequent antigenic changes in hemagglutinin might render them less effective or unavailable. We previously reported that modified outer membrane vesicle (fmOMV) provided immediate and robust protective immunity against various subtypes of influenza virus. However, the effect was transient because it was innate immunity-dependent. In this study, we investigated the effects of consecutive administration of fmOMV and influenza virus on the adaptive immune response and long-term protective immunity against influenza virus. When the mice were pretreated with fmOMV and subsequently infected with influenza virus, strong influenza-specific antibody and T cell responses were induced in both systemic and lung mucosal compartments without pathogenic symptoms. Upon the secondary viral challenge at week 4, the mice given fmOMV and influenza virus exhibited almost complete protection against homologous and heterologous viral challenge. More importantly, this strong protective immunity lasted up to 18 weeks after the first infection. These results show that pretreatment with fmOMV and subsequent infection with influenza virus efficiently induces broad and long-lasting protective immunity against various virus subtypes, suggesting a novel antiviral strategy against newly-emerging viral diseases without suitable vaccines or therapeutics.  相似文献   

11.

Background

Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus.

Results

Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses.

Conclusion

Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus.  相似文献   

12.
The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARS-CoV-2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the two-month study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2.  相似文献   

13.
Recombinant viruses are attractive candidates for the development of novel vaccines. A number of viruses have been engineered as vaccine vectors to express antigens from other pathogens or tumors. Inoculation of susceptible animals with this type of recombinant virus results in the induction of both humoral and cellular immune responses directed against the foreign antigens. A general problem to this approach is that existing immunity to the vector can diminish or completely abolish the efficacy of the viral vector. In this study, we investigated whether poliovirus recombinants are capable of inducing effective immunity to the foreign antigen in previously vaccinated animals. Antipoliovirus immunity was induced in susceptible mice by intraperitoneal immunization with live poliovirus. Immunized mice developed antibodies directed against capsid proteins that effectively neutralized poliovirus in vitro and protected animals from a lethal challenge with a high dose of pathogenic poliovirus. To test whether preexisting immunity reduces the efficacy of vaccination with recombinant poliovirus, immunized mice were inoculated with a recombinant poliovirus expressing the C-terminal half of chicken ovalbumin (Polio-Ova). Animals developed ovalbumin-specific antibodies and cytotoxic T lymphocytes (CTL). While the antibody titers observed in preimmune and naive mice were similar, the overall CTL response appeared to be reduced in preimmune mice. Importantly, vaccination with Polio-Ova was able to effectively protect preimmune mice against lethal challenge with a tumor expressing the antigen. Thus, preexisting immunity to poliovirus does not compromise seriously the efficacy of replication-competent poliovirus vaccine vectors. These results contrast with those observed for other viral vaccine vectors and suggest that preexisting immunity does not equally affect the vaccine potential of individual viral vectors.  相似文献   

14.
The envelope protein of dengue virus is involved in host cell attachment for entry and induction of protective immunity. Current efforts are focused on producing a tetravalent vaccine by mixing four monovalent vaccine components. In this work, we developed a genetic vaccine based on a novel adeno-associated viral (AAV) vector expressing the carboxy-terminal truncated envelope protein (79E) of dengue virus. The expression of the recombinant 79E protein in HEK 293 cells was confirmed by Western blot. Vectors packaged with novel AAV capsids (AAV2/8 or AAV2/rh32.33) were injected into C57BL/6 mice intramuscularly. Dengue virus antigen was produced in the mice and induced long-lasting antibody responses against the dengue virus still detectable 20 weeks after immunization. AAV2/8 vaccine induced higher anti-dengue virus antibody levels than AAV2/rh32.33 vaccine or AAV plasmid. Furthermore, the anti-dengue antibodies could neutralize homogeneous dengue virus. These results demonstrated that the AAV vaccines possessed appropriate immunogenicity and could be used for the development of an effective dengue vaccine.  相似文献   

15.
Ge J  Wang X  Tao L  Wen Z  Feng N  Yang S  Xia X  Yang C  Chen H  Bu Z 《Journal of virology》2011,85(16):8241-8252
Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 109.8 50% egg infective doses (EID50)/ml of allantoic fluid. RVG expression enabled rL-RVG to spread from cell to cell in a rabies virus-like manner, and RVG was incorporated on the surface of the rL-RVG viral particle. RVG incorporation did not alter the trypsin-dependent infectivity of the NDV vector in mammalian cells. rL-RVG and La Sota NDV showed similar levels of sensitivity to a neutralization antibody against NDV and similar levels of resistance to a neutralization antibody against rabies virus. Animal studies demonstrated that rL-RVG is safe in several species, including cats and dogs, when administered as multiple high doses of recombinant vaccine. Intramuscular vaccination with rL-RVG induced a substantial rabies virus neutralization antibody response and provided complete protection from challenge with circulating rabies virus strains. Most importantly, rL-RVG induced strong and long-lasting protective neutralization antibody responses to rabies virus in dogs and cats. A low vaccine dose of 108.3 EID50 completely protected dogs from challenge with a circulating strain of rabies virus for more than a year. This is the first study to demonstrate that immunization with an NDV-vectored vaccine can induce long-lasting, systemic protective immunity against rabies.  相似文献   

16.

Background

Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with febrile illness often accompanied by rash and arthralgia that may persist for several years. Outbreaks are associated with high morbidity and create a public health challenge for countries affected. Recent outbreaks have occurred in both Europe and the Americas, suggesting CHIKV may continue to spread. Despite the sustained threat of the virus, there is no approved vaccine or antiviral therapy against CHIKV. Therefore, it is critical to develop a vaccine that is both well tolerated and highly protective.

Methodology/Principal Findings

In this study, we describe the construction and characterization of a modified Vaccinia virus Ankara (MVA) virus expressing CHIKV E3 and E2 proteins (MVA-CHIK) that protected several mouse models from challenge with CHIKV. In particular, BALB/c mice were completely protected against viremia upon challenge with CHIKV after two doses of MVA-CHIK. Additionally, A129 mice (deficient in IFNα/β) were protected from viremia, footpad swelling, and mortality. While high anti-virus antibodies were elicited, low or undetectable levels of neutralizing antibodies were produced in both mouse models. However, passive transfer of MVA-CHIK immune serum to naïve mice did not protect against mortality, suggesting that antibodies may not be the main effectors of protection afforded by MVA-CHIK. Furthermore, depletion of CD4+, but not CD8+ T-cells from vaccinated mice resulted in 100% mortality, implicating the indispensable role of CD4+ T-cells in the protection afforded by MVA-CHIK.

Conclusions/Significance

The results presented herein demonstrate the potential of MVA to effectively express CHIKV E3-E2 proteins and generate protective immune responses. Our findings challenge the assumption that only neutralizing antibodies are effective in providing protection against CHIKV, and provides a framework for the development of novel, more effective vaccine strategies to combat CHIKV.  相似文献   

17.
Newly emerging viruses often circulate as a heterogeneous swarm in wild animal reservoirs prior to their emergence in humans, and their antigenic identities are often unknown until an outbreak situation. The newly emerging severe acute respiratory syndrome coronavirus (SARS-CoV) and reemerging influenza virus cause disproportionate disease in the aged, who are also notoriously difficult to successfully vaccinate, likely due to immunosenescence. To protect against future emerging strains, vaccine platforms should induce broad cross-reactive immunity that is sufficient to protect from homologous and heterologous challenge in all ages. From initial studies, we hypothesized that attenuated Venezuelan equine encephalitis virus (VEE) replicon particle (VRP) vaccine glycoproteins mediated vaccine failure in the aged. We then compared the efficacies of vaccines bearing attenuated (VRP(3014)) or wild-type VEE glycoproteins (VRP(3000)) in young and aged mice within novel models of severe SARS-CoV pathogenesis. Aged animals receiving VRP(3000)-based vaccines were protected from SARS-CoV disease, while animals receiving the VRP(3014)-based vaccines were not. The superior protection for the aged observed with VRP(3000)-based vaccines was confirmed in a lethal influenza virus challenge model. While the VRP(3000) vaccine's immune responses in the aged were sufficient to protect against lethal homologous and heterologous challenge, our data suggest that innate defects within the VRP(3014) platform mediate vaccine failure. Exploration into the mechanism(s) of successful vaccination in the immunosenescent should aid in the development of successful vaccine strategies for other viral diseases disproportionately affecting the elderly, like West Nile virus, influenza virus, norovirus, or other emerging viruses of the future.  相似文献   

18.
The widespread influenza virus infection further emphasizes the need for novel vaccine strategies that effectively reduce the impact of epidemic as well as pandemic influenza. Conventional influenza vaccines generally induce virus neutralizing antibody responses which are specific for a few antigenically related strains within the same subtype. However, antibodies directed against the conserved stalk domain of HA could neutralize multiple subtypes of influenza virus and thus provide broad-spectrum protection. In this study, we designed and constructed a recombinant baculovirus-based vaccine, rBac-HA virus, that expresses full-length HA of pandemic H1N1 influenza virus (A/California/04/09) on the viral envelope. We demonstrated that repeated intranasal immunizations with rBac-HA virus induced HA stalk-specific antibody responses and protective immunity against homologous as well as heterosubtypic virus challenge. The adoptive transfer experiment shows that the cross-protection is conferred by the immune sera which contain HA stalk-specific antibodies. These results warrant further development of rBac-HA virus as a broad-protective vaccine against influenza. The vaccine induced protection against infection with the same subtype as well as different subtype, promising a potential universal vaccine for broad protection against different subtypes to control influenza outbreaks including pandemic.  相似文献   

19.
BackgroundZika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV.Methodology/Principle findingsWe have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge.Conclusions/SignificanceThese studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号