首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
广东省大中型供水水库营养现状及浮游生物的响应   总被引:58,自引:4,他引:58  
林秋奇  胡韧  段舜山  韩博平 《生态学报》2003,23(6):1101-1108
于2000年调查了广东省18座大中型供水水库的水质现状并探讨了浮游生物对营养水平的响应。总氮、总磷、透明度和叶绿素a分别为0.15~7.15mg/L、0.003~0.387mg/L、0.4~6.3m和0.6~32.3ug/L。总氮、总磷、透明度均与叶绿素a呈较高的相关性。根据这4个因子的综合加权营养状态指数为23.7~55.1,季节差异不大,大多数水库处于中营养状态。金藻在中-富及富营养型水库中没有分布,而蓝藻、绿藻、硅藻和甲藻在调查水库中均有比较广的营养生态位,但它们的密度及相对优势度在各营养型水库中有一定的差异。高营养水平水库有较高的细胞密度和叶绿素a含量。营养水平较低的水库浮游植物以硅藻-甲藻、硅藻-绿藻或金藻-硅藻为主;营养水平较高的水库以蓝藻-硅藻或蓝藻-绿藻为主,并有较高的裸藻密度。浮游动物基本上以桡足类为优势种群,但在中-富营养和富营养型水库中,哲水蚤种类比低营养型水库中少。枝角类优势种类在各营养型水库差别不大。轮虫对水体营养水平的响应相对比较显著。低营养水平水库的轮虫以广营养型、中营养型或寡中营养型种类为主,种类数目比较少;富营养和中-富营养型水库的轮虫以喜在中营养到富营养条件下生长的种类为主,且轮虫种类数目比较多。  相似文献   

3.
Using qualitative loop analysis we have extended our examination of a Delaware Bay plankton community to include an investigation of the roles played by the various entities (population, guild or nutrient) in the community. In an entity removal exercise, we used stability relationships as a probe into community structure. Six types of stability change are possible as a result of entity removal from the system: stable to stable (s-->s); stable to unstable (s-->u); stable to disconnected (s-->d); unstable to stable (u-->s); unstable to unstable (u-->u); unstable to disconnected (u-->d). Using these changes as an investigative tool, we found that in order to account for the stability-instability patterns, it was necessary to construct a refined trophic structure model. The observed connections between the entities in the larger model could be grouped into two different types of stability substructures: a simple pattern and a more complex branching pattern. These patterns map easily onto the refined trophic structure model. Using stability analysis it is also possible to model community structure in ways other than the traditional trophic approach. Patterns of system necessity and relative contribution to stability are observed. These patterns match the refined trophic structure model derived previously. The roles that the various entities play in the overall community were followed over an annual cycle. Entities were seen to change their roles as a function of time and status within a subgroup. These results show that stability determinations have the potential to be used as a valuable tool in community analysis.  相似文献   

4.
Flores  L. Naselli  Barone  R. 《Hydrobiologia》1994,(1):197-205
The relationship between the trophic state of 21 Sicilian dam reservoirs and their taxonomic community structure of phytoplankton (87 taxa) as well as zooplankton (45 taxa) have been examined by means of cluster analysis performed using annual average biomass values. The phytoplankton community structure was closely connected with the trophic state of the reservoirs, whereas the zooplankton community structure was related to hydrological regimes peculiar to the individual water bodies and not to the trophic state.  相似文献   

5.
Understanding how ecological processes determine patterns among species coexisting within ecosystems is central to ecology. Here, we explore relationships between species’ local coexistence and their trophic niches in terms of their feeding relationships both as consumers and as resources. We build on recent concepts and methods from community phylogenetics to develop a framework for analysing mechanisms responsible for community composition using trophic similarity among species and null models of community assembly. We apply this framework to 50 food webs found in 50 Adirondack lakes and find that species composition in these communities appears to be driven by both bottom‐up effects by which the presence of prey species selects for predators of those prey, and top‐down effects by which prey more tolerant of predation out‐compete less tolerant prey of the same predators. This approach to community food webs is broadly applicable and shows how species interaction networks can inform an increasingly large array of theory central to community ecology.  相似文献   

6.
Ecosystems under stress may respond abruptly and irreversibly through tipping points. Although mechanisms leading to alternative stable states are much studied, little is known about how such ecosystems could have emerged in the first place. We investigate whether evolution by natural selection along resource gradients leads to bistability, using shallow lakes as an example. There, tipping points occur between two alternative states dominated by either submersed or floating macrophytes depending on nutrient loading. We model the evolution of macrophyte depth in the lake, identify the conditions under which the ancestor population diversifies and investigate whether alternative stable states dominated by different macrophyte phenotypes occur. We find that eco-evolutionary dynamics may lead to alternative stable states, but under restrictive conditions. Such dynamics require sufficient asymmetries in the acquisition of both light and nutrient. Our analysis suggests that competitive asymmetries along opposing resource gradients may allow bistability to emerge by natural selection.  相似文献   

7.
Long-term pattern of alternative stable states in two shallow eutrophic lakes   总被引:35,自引:1,他引:35  
  • 1 Lake Tåkern and Lake Krankesjön, two moderately eutrophic, shallow lakes in southern Sweden, have during the past few decades shifted several times between a clear-water state with abundant submerged vegetation and a turbid state with high phytoplankton densities.
  • 2 Between 1985 and 1991, Lake Takern was in a clear state, whereas Lake Krankesjon shifted from a turbid to a clear state. During this shift, the area covered by submerged macrophytes expanded, followed by an increase in water transparency, plant-associated macroinvertebrates, and piscivorous fish. Nutrient concentrations, phytoplankton biomass and abundance of planktonic cladocerans decreased.
  • 3 In both lakes, water level fluctuations were the most common factor causing shifts, affecting submerged macrophytes either through changes in light availability or through catastrophic events such as dry-out or mechanical damage by ice movement.
  • 4 Our data give further support for the existence of two alternative stable states in shallow lakes maintained by self-stabilizing feedback mechanisms.
  相似文献   

8.

Background

Over the last 30 years, extensive studies have revealed the crucial roles played by microbes in aquatic ecosystems. It has been shown that bacteria, viruses and protozoan grazers are dominant in terms of abundance and biomass. The frequent interactions between these microbiological compartments are responsible for strong trophic links from dissolved organic matter to higher trophic levels, via heterotrophic bacteria, which form the basis for the important biogeochemical roles of microbial food webs in aquatic ecosystems. To gain a better understanding of the interactions between bacteria, viruses and flagellates in lacustrine ecosystems, we investigated the effect of protistan bacterivory on bacterial abundance, production and structure [determined by 16S rRNA PCR-DGGE], and viral abundance and activity of two lakes of contrasting trophic status. Four experiments were conducted in the oligotrophic Lake Annecy and the mesotrophic Lake Bourget over two seasons (early spring vs. summer) using a fractionation approach. In situ dark vs. light incubations were performed to consider the effects of the different treatments in the presence and absence of phototrophic activity.

Results

The presence of grazers (i.e. < 5-μm small eukaryotes) affected viral production positively in all experiments, and the stimulation of viral production (compared to the treatment with no eukaryotic predators) was more variable between lakes than between seasons, with the highest value having been recorded in the mesotrophic lake (+30%). Viral lysis and grazing activities acted additively to sustain high bacterial production in all experiments. Nevertheless, the stimulation of bacterial production was more variable between seasons than between lakes, with the highest values obtained in summer (+33.5% and +37.5% in Lakes Bourget and Annecy, respectively). The presence of both predators (nanoflagellates and viruses) did not seem to have a clear influence upon bacterial community structure according to the four experiments.

Conclusions

Our results highlight the importance of a synergistic effect, i.e. the positive influence of grazers on viral activities in sustaining (directly and indirectly) bacterial production and affecting composition, in both oligotrophic and mesotrophic lakes.  相似文献   

9.
10.
The role of trophic cascades in structuring freshwater communities has been extensively studied. Most of this work, however, has been conducted in oligotrophic northern lakes that contain highly vulnerable cyprinid prey: aquatic communities where trophic interactions are likely to be stronger than in many other systems. Fewer studies have been conducted in eutrophic systems or have examined the bottom-up effects of benthivorous fishes, and none have directly compared these effects to those of piscivores on ecosystem structure and function. We conducted enclosure experiments in eutrophic ponds to examine trophic effects of invasive benthivores (common carp—Cyprinus carpio L.), native piscivores (largemouth bass—Micropterus salmoides [Lacepède]), and their interactions with common centrarchid prey with well-developed anti-predatory behaviors (age-1 bluegill—Lepomis macrochirus Rafinesque and young-of-year largemouth bass). At the end of the 60-day experiment, common carp had strong bottom-up effects that increased total phosphorus and turbidity while decreasing chlorophyll a biomass and macrophyte cover that resulted in decreased macroinvertebrate biomass and also decreased growth in both juvenile largemouth bass and bluegill. Piscivorous largemouth bass, however, did not affect the survival of either planktivorous juvenile largemouth bass or bluegill. Growth of juvenile largemouth bass was also not affected, but juvenile bluegill growth was significantly diminished, possibly due to nonconsumptive effects of predation. Our results suggest that, in a centrarchid-dominated eutrophic system, top-down effects of predators are overwhelmed by common carp-mediated bottom-up effects. These bottom-up effects strongly affected multiple trophic levels, thus altering aquatic community structure and function.  相似文献   

11.
No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m−2 bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

12.
Summary Coastal sage scrub is a community found extensively throughout cismontane California south of San Francisco, but has been surprisingly little studied. In the study area, which extends from Santa Barbara to the San Gorgonio Pass, two major floristic groupings can be found. In the basin bounded coastwards by a line drawn along the axis of the Santa Ana Mountains a large number of native and introduced annual herbs and a few shrubs (e.g.Encelia farinosa), rare or absent in the remainder of the study area, characterize one floristic group. In the coastal region the variety of shrub species increases, and the herbs are predominantly native and more restricted in number. Eleven groups defined by physiognomy, structure and species dominance, and arbitrarily called associations, are recognized. These associations can be grouped into four physiognomic-structural types which transgress the boundaries of the floristic groups. The results of this study and the limited previous literature suggest that Californian coastal sage scrub could be divided, mainly on floristic criteria, into Venturan, San Diegan and Riversidian sage.Plant nomenclature follows Munz & Keek (1968).We gratefully acknowledge the financial help provided by the Department of Earth Sciences, University of California, Riverside, and the aid in plant identification provided by Mr. Oscar Clarke, Museum Scientist, Department of Biology, University of California, Riverside.  相似文献   

13.
1. Palaeolimnological data were used to investigate drivers of the community of primary producers in Lake Mattamuskeet, North Carolina, U.S.A. This is a large, shallow lake with two basins currently dominated by phytoplankton and macrophytes. The two basins were divided in 1940 by the building of a roadway across the lake, which also corresponded with the divergence in their ecosystem state. 2. Photosynthetic pigments, organic matter and nutrients (P, N, C, S) were analysed in sediment cores from each basin to reconstruct the primary producer community over the past c. 100 years. We sought to answer two questions. First, what changes to the ecosystem resulting from the building of the roadway caused the development of different primary producer communities in the two basins? Second, why have the alternative ecosystem states persisted despite a variety of human perturbations since 1940? 3. K‐means cluster analysis and principal component analysis were applied to identify three sediment types based on photosynthetic pigment data: sediments indicating low productivity (low pigment concentrations), sediments associated with macrophytes (chlorophyll a and b) and with phytoplankton (alloxanthin and aphanizophyll). In addition, other palaeolimnological proxies measured, such as loss on ignition, total phosphorus, total organic carbon/total nitrogen and other nutrients, were different in post‐1940 sediments within the two basins. 4. These differences suggest characteristics, such as nutrient cycling, water depth and other physical changes resulting from roadway construction, combined to establish and maintain the differing communities of primary producers in the two basins. Furthermore, Fe/S dynamics and waterfowl herbivory probably contributed to the development of the two ecosystem states.  相似文献   

14.
Sigrid D. P. Smith 《Oikos》2012,121(5):675-686
Ecological communities can vary greatly in species composition. Often this variation is discontinuous, in that abrupt changes in composition occur over small distances in space or short periods of time. A wide range of hypotheses from different subfields of ecology have been proposed to explain these patterns. I suggest a framework to quantitatively evaluate these hypotheses with observational data by characterizing 1) how community composition varies across sites in space, 2) how community composition varies through time, and 3) the possible drivers of this variation. I applied this approach to understand the community composition of producers in temporary and semipermanent wetlands in Michigan, USA. I identified several distinct community states which were variously dominated by particular plant functional groups (submerged, floating or emergent plants) or had no plants throughout a season. Evaluating possible hypotheses to explain this variation, I found that similar communities were not necessarily clustered near each other, suggesting that dispersal was not limited for these plants. Some sites exhibited a great deal of change in plant composition among years, shifting between two community states, but there was relatively little change at sites within a year. Moreover, these shifts did not occur in a particular order to suggest directional change or repeating cycles. Community composition was associated with several environmental variables such as pH, light and depth, and multivariate analyses suggested that species had complex, nonlinear responses to these possible drivers. Alternative stable states and interactions among multiple nonlinear drivers best explained the patterns observed in these wetlands. By formalizing initial data collection in other systems with the framework suggested here, we may gain insight into the causes of alternative community states beyond wetlands and the role of climate change and other anthropogenic forces in precipitating transitions between states.  相似文献   

15.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   

16.
Recent evidence reveals that food webs within the Malili Lakes, Sulawesi, Indonesia, support community assemblages that are made up primarily of endemic species. It has been suggested that many of the species radiations, as well as the paucity of cosmopolitan species in the lakes, are related to resource limitation. In order to substantiate the possibility that resource limitation is playing such an important role, a study of the phytoplankton and zooplankton communities of Lake Matano was implemented between 2000 and 2004. We determined species diversity, relative abundances, size ranges, and total biomass for the phytoplankton and zooplankton, including the distribution of ovigerous individuals throughout the epilimnion of Lake Matano in three field seasons. The phytoplankton community exhibited very low biomass (<15 μg l?1) and species richness was depressed. The zooplankton assemblage was also limited in biomass (2.5 mg l?1) and consisted only of three taxa including the endemic calanoid Eodiaptomus wolterecki var. matanensis, the endemic cyclopoid, Tropocyclops matanensis and the rotifer Horaella brehmi. Zooplankton were very small (<600 μm body length), and spatial habitat partitioning was observed, with Tropocylops being confined to below 80 m, while rotifer and calanoid species were consistently observed above 80 m. Less than 0.1% of the calanoid copepods in each year were egg-bearing, suggesting very low population turnover rates. It was concluded that chemical factors as opposed to physical or biological processes were regulating the observed very low standing crops of phytoplankton which in turn supports a very minimal zooplankton community restricted in both species composition and abundance. As chemical factors are a function of the catchment basin of Lake Matano, it is predicted that resource limitation has long played an important role in shaping the unique endemic assemblages currently observed in the food web of the lake.  相似文献   

17.
The development of North Sea coastal plankton communities in four simultaneously filled plastic bags was followed for one month. To obtain a concentration of 5 ppb in the water phase a single dose of mercuric chloride was added to two of the bags. This addition had a close impact on the development of the phytoplankton, while that on the zooplankton and the decomposers was less clear. In the course of the experiment, methylation of the added mercury proceeded in the sediment in the bags. The plastic bag method seems to be a suitable tool in toxicological research.  相似文献   

18.
Acquiring sufficient nutrients is particularly important for insects that are unable to synthesize certain nutrient types de novo, as is the case for numerous parasitoid species that do not synthesize lipids. The lipid reserves of parasitoids are acquired from a single host during larval development. This imposes constraints on the quantity and quality of available lipids. In the present study, the lipid dynamics throughout the trophic cascade are investigated by measuring lipogenic ability, modifications in fatty acid composition and host exploitation efficiency in species at different trophic positions within the community of parasitoids associated with the gall wasp Diplolepis rosae L. (Hymenoptera: Cynipidae). The results obtained show that lipid levels remain stable or decline after feeding in all species, indicating that none of the wasps synthesize lipids. Fatty acid composition is highly similar between the gall wasp, parasitoid and hyperparasitoid species, with the exception of the parasitoid Orthopelma mediator Thunberg (Hymenoptera: Ichneumonidae). The divergence of fatty acid composition in O. mediator suggests that this species is able to modify its fatty acid composition after the consumption of host lipids. The efficiency of exploitation of host resource, in terms of dry body mass acquired, varies among the species (41–70%), although it is high overall compared with the efficiencies reported in other animals. Hence, for parasitoid wasps that lack lipid synthesis capabilities, the efficiency of host exploitation is high and fatty acids are consumed directly from the host without modification, leading to stable fatty acid compositions throughout the trophic cascade.  相似文献   

19.
During the winter and spring of 1981, the dynamics of a marinepelagic rotifer, Synchaeta vorax Rousselet and tintinnids ofthe genus Tintinnopsis, were studied in the Gullmar Fjord onthe Swedish west coast. Although present in February and March,it was not until early April when the surface water temperatureexceeded 6?C that the rotifer population started to grow rapidly.Thereafter, the population increased exponentially for 6 weeks.Estimates of consumption of phytoplankton by rotifers and tintinnidsin their most dynamic phase approximated to that of the phyto-planktonproduction. Lack of data on the amount of detritus availableand the number of young rotifers passing the 90 µm netare however obvious limitations in such calculations. Nevertheless,the results indicate that the tintinnids and the rotifers arehighly important components in the area's spring plankton community.Through high turnover rates, they are able to utilize effectivelythe spring phytoplankton bloom and thus serve as a link betweenthe primary and the larger secondary producers.  相似文献   

20.
Aquatic communities are one of the most studied systems where alternative states or regime shifts have been detected. We used data spanning a century of time to test whether the zoobenthic community of Lake Mendota, Wisconsin, USA, was relatively stable through time, variable, or whether there was any evidence of alternative community states. We used multivariate statistical analyses to test for community structure similarity and whether detected differences corresponded to major changes in the local environment. Surprisingly, the benthic community in Lake Mendota was not statistically different from the mid 1960s to the present. Similarly, the benthic community was not significantly different from 1914 to the 1950s. However, between the 1950s and mid 1960s there was a dramatic change in the zoobenthic community, including the loss of key taxa and a decrease in the diversity of several major taxa. This dramatic change cannot be attributed to any single environmental factor, and is correlated with multiple factors acting simultaneously, including increased urban development, human population density, intensive agriculture, and the introduction of a major invasive species, Eurasian watermilfoil. The long-term similarity in the benthic community before and after the shift suggests two alternative states that switched with the confluence of multiple stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号