首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Abstact The present paper demonstrates that the proteasome inhibitor bortezomib, which behaves as an apoptotic agent in hepatoma HepG2 cells, caused in these cells a decrease in IκBα level and a consequent increase in NF-κB activity. The effect already appeared at 4 h of treatment and preceded the onset of apoptosis which was observed at 24 h. Our results demonstrate that bortezomib-induced IκBα degradation occurred in conjunction with the activation of caspase-8; moreover, the decrease in IκBα level was prevented in a dose-dependent manner by the addition of z-IETD, a specific inhibitor of caspase-8. Bortezomib caused the same effects in non-tumor Chang liver cells, which were not susceptible to the apoptotic effect of the drug. Our results also show that other proteases, such as caspase-3 and calpains, exerted only a limited effect on IκBα degradation. These findings suggest that caspase-8 can be involved in the control of IκBα level. In addition, the activation of caspase-8 can exert, at least in the first phase of treatment with bortezomib, a protective effect in both HepG2 and Chang liver cells, favouring the activation of the survival factor NF-κB  相似文献   

5.
6.
7.
8.
9.
10.
Fractionated -irradiation (15 × 2 Gy in 3 weeks) induces a cellular resistance in HeLa cells against cisplatin exposure but not against irradiation. The mechanisms underlying this cellular resistance are associated with major changes in the TNFR1-dependent transduction pathway. The resistant HeLa/B cells exhibit increased levels of NF-B with temporally independent regulation of the subunits NF-B50 and NF-B65. Blocking IB degradation by the proteasome inhibitor PSI, which abolishes the release of the active NF-B protein, induces cell death much more effectively in the parental than in the resistant HeLa/B cells. The translocation of NF-B does not seem to be affected in a similar manner since masking of the translocation sequence by NF-B SN50 enhances cisplatin toxicity to the same degree in both cell lines and overcomes drug resistance. Changes in upstream signaling are suggested by increased sensitivity of the parental HeLa cells to cisplatin in the presence of neutralizing anti-TNFR1. In HeLa/B cells, reduced expression of the 50 kDa silencer of death domain, SODD, is accompanied by constitutive overexpression of a 40–42 kDa SODD-like protein. A possible involvement of SODD in cisplatin resistance is discussed, which may shift the balance between life and death in the TNF receptor pathway to increased NF-B activation.  相似文献   

11.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

12.
The central pathogenic feature of AIDS is the dramatic loss of CD4+ lymphocytes. Despite more than a decade of intense research, the exact mechanism by which HIV causes this is still not understood. A major model for T cell depletion, proposed originally by Ameison and Capron in a report published in 1991, is that HIV sensitizes CD4+ T cells for activation-induced apoptosis. The apoptotic model of T cell depletion is discussed, and experiments that address the questions of whether apoptosis is restricted to infected cells or 'bystander' T cells, and whether T cell apoptosis requires participation of separate HIV-infected haematopoietic cell populations, are reviewed.  相似文献   

13.
14.
15.
Abnormal levels of reactive oxygen species (ROS) and inflammatory cytokines have been observed in the skeletal muscle during muscle wasting including sarcopenia. However, the mechanisms that signal ROS production and prolonged maintenance of ROS levels during muscle wasting are not fully understood. Here, we show that myostatin (Mstn) is a pro-oxidant and signals the generation of ROS in muscle cells. Myostatin, a transforming growth factor-β (TGF-β) family member, has been shown to play an important role in skeletal muscle wasting by increasing protein degradation. Our results here show that Mstn induces oxidative stress by producing ROS in skeletal muscle cells through tumor necrosis factor-α (TNF-α) signaling via NF-κB and NADPH oxidase. Aged Mstn null (Mstn(-/-) ) muscles, which display reduced sarcopenia, also show an increased basal antioxidant enzyme (AOE) levels and lower NF-κB levels indicating efficient scavenging of excess ROS. Additionally, our results indicate that both TNF-α and hydrogen peroxide (H(2) O(2) ) are potent inducers of Mstn and require NF-κB signaling for Mstn induction. These results demonstrate that Mstn and TNF-α are components of a feed forward loop in which Mstn triggers the generation of second messenger ROS, mediated by TNF-α and NADPH oxidase, and the elevated TNF-α in turn stimulates Mstn expression. Higher levels of Mstn in turn induce muscle wasting by activating proteasomal-mediated catabolism of intracellular proteins. Thus, we propose that inhibition of ROS induced by Mstn could lead to reduced muscle wasting during sarcopenia.  相似文献   

16.
17.
18.
19.
Overinduced CD4+CD25+high regulatory T cells (Treg) and downregulated NK cells contribute to tumor-relevant immune tolerance and interfere with tumor immunity. In this study, we aimed to design a novel strategy with cytokine combination to correct the dysregulated Treg and NK cells in malignant patients. Initially, a total of 58 healthy individuals and 561 malignant patients were analyzed for their cellular immunity by flow cytometry. The average percentages of CD4+CD25+high/lymphocyte were 1.30?±?1.19?% ( $ \bar{x} $ ?±?SD) in normal adults and 3.274?±?4.835?% in malignant patients (p?<?0.001). The ratio of CD4+CD25+high to CD4+ was 3.58?±?3.19?% in normal adults and 6.01?±?5.89?% to 13.50?±?23.60?% in different kinds of malignancies (p?<?0.001). Of normal adults, 15.52?% had >3?% Treg and 12.07?% had <10?% NK cells. In contrast, the Treg (>3?%) and NK (<10?%) percentages were 40.82 and 34.94?% in malignant patients, respectively. One hundred and ten patients received the immunomodulation therapy with IFN-?? and/or IL-2. The overinduced Treg in 86.3?% and the reduced NK cells in 71.17?% of the patients were successfully modulated. In comparison, other lymphocyte subpopulations in most patients were much less affected by this treatment. No other treatment-relevant complications except slight pyrexia, fatigue, headache, and myalgia were observed. In conclusion, dysregulated Treg and/or NK cells were common in malignant patients. Different from any regimens ever reported, this strategy was simple and effective without severe complications and will become a basic regimen for other cancer therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号