首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.  相似文献   

2.

Background

Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NCGag protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements.

Methodology/Principal Findings

We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding.

Conclusions/Significance

Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.  相似文献   

3.

Background

Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection.

Methodology

Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed.

Principal Findings

HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05).

Conclusions

HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection.  相似文献   

4.
Kim CS  Keum SJ  Jang SK 《PloS one》2011,6(8):e22808

Background

We previously reported infectious HCV clones that contain the convenient reporters, green fluorescent protein (GFP) and Renilla luciferase (Rluc), in the NS5a-coding sequence. Although these viruses were useful in monitoring viral proliferation and screening of anti-HCV drugs, the infectivity and yield of the viruses were low.

Methodology/Principal Findings

In order to obtain a highly efficient HCV cultivation system, we transfected Huh7.5.1 cells [1] with JFH 5a-GFP RNA and then cultivated cells for 20 days. We found a highly infectious HCV clone containing two cell culture-adapted mutations. Two cell culture-adapted mutations which were responsible for the increased viral infectivity were located in E2 and p7 protein coding regions. The viral titer of the variant was ∼100-fold higher than that of the parental virus. The mutation in the E2 protein increased the viability of virus at 37°C by acquiring prolonged interaction capability with a HCV receptor CD81. The wild-type and p7-mutated virus had a half-life of ∼2.5 to 3 hours at 37°C. In contrast, the half-life of viruses, which contained E2 mutation singly and combination with the p7 mutation, was 5 to 6 hours at 37°C. The mutation in the p7 protein, either singly or in combination with the E2 mutation, enhanced infectious virus production about 10–50-fold by facilitating an early step of virion production.

Conclusion/Significance

The mutation in the E2 protein generated by the culture system increases virion viability at 37°C. The adaptive mutation in the p7 protein facilitates an earlier stage of virus production, such as virus assembly and/or morphogenesis. These reporter-containing HCV viruses harboring adaptive mutations are useful in investigations of the viral life cycle and for developing anti-viral agents against HCV.  相似文献   

5.

Background

Viruses interact with and exploit the host cellular machinery for their multiplication and propagation. The MEK/ERK signaling pathway positively regulates replication of many RNA viruses. However, whether and how this signaling pathway affects hepatitis C virus (HCV) replication and production is not well understood.

Methods and Results

In this study, we took advantage of two well-characterized MEK/ERK inhibitors and MEK/ERK dominant negative mutants and investigated the roles of the MEK/ERK signaling pathway in HCV gene expression and replication. We showed that inhibition of MEK/ERK signaling enhanced HCV gene expression, plus- and minus-strand RNA synthesis, and virus production. In addition, we showed that this enhancement was independent of interferon-α (IFN-α) antiviral activity and did not require prior activation of the MEK/ERK signaling pathway. Furthermore, we showed that only MEK and ERK-2 but not ERK-1 was involved in HCV replication, likely through regulation of HCV RNA translation.

Conclusions

Taken together, these results demonstrate a negative regulatory role of the MEK/ERK signaling pathway in HCV replication and suggest a potential risk in targeting this signaling pathway to treat and prevent neoplastic transformation of HCV-infected liver cells.  相似文献   

6.

Background and Aims

Despite the discovery of hepatitis C virus (HCV) entry factor, the mechanism by which it is regulated by miRNAs remains unclear. Adipose tissue-derived human mesenchymal stem cells (AT-hMSCs) have been widely used for differentiated hepatocyte-like cells (DHCs). Here, we established an in vitro HCV infection model using DHCs from AT-hMSCs and identified miRNAs that modulate HCV infectivity.

Methods

AT-hMSCs were differentiated into DHCs using the conditional media, and evaluated for hepatocyte characteristics using RT-PCR, immunocytochemistry, periodic acid-Schiff staining, and a urea synthesis assay. The expression of HCV candidate receptors was also verified using immunocytochemistry. The levels of candidate miRNAs targeting HCV receptors were then determined by relative quantitative RT-PCR (rqRT-PCR). Finally, DHCs were infected using HCVcc and serum from HCV-infected patients, and infectivity of the virus was measured by rqRT-PCR and transmission electron microscopy (TEM).

Results

The expected changes in morphology, function and hepatic gene expression were observed during hepatic differentiation. Moreover, the expression of candidate HCV entry factors and miR-27a were altered during hepatic differentiation. The infection and replication of HCV occurred efficiently in DHCs treated with HCVcc or infected with serum from HCV-infected patients. In addition, HCV infectivity was suppressed in miR-27a-transfected DHCs, due to the inhibition of LDLR expression by miR-27a.

Conclusions

Our results demonstrate that AT-hMSCs are a good source of DHCs, which are suitable for in vitro cultivation of HCV. Furthermore, these results suggest that miR-27a modulates HCV infectivity by regulating LDLR expression.  相似文献   

7.
Yang D  Liu N  Zuo C  Lei S  Wu X  Zhou F  Liu C  Zhu H 《PloS one》2011,6(11):e27552

Background and Aim

The interaction between hepatitis C virus (HCV) and innate antiviral defense systems in primary human hepatocytes is not well understood. The objective of this study is to examine how primary human hepatocytes response to HCV infection.

Methods

An infectious HCV isolate JFH1 was used to infect isolated primary human hepatocytes. HCV RNA or NS5A protein in the cells was detected by real-time PCR or immunofluorescence staining respectively. Apoptosis was examined with flow cytometry. Mechanisms of HCV-induced IFN-β expression and apoptosis were determined.

Results

Primary human hepatocytes were susceptible to JFH1 virus and released infectious virus. IFN-α inhibited viral RNA replication in the cells. IFN-β and interferon-stimulated genes were induced in the cells during acute infection. HCV infection induced apoptosis of primary human hepatocytes through the TRAIL-mediated pathway. Silencing RIG-I expression in primary human hepatocytes inhibited IFN-β and TRAIL expression and blocked apoptosis of the cells, which facilitated viral RNA replication in the cells. Moreover, HCV NS34A protein inhibited viral induced IFN-β expression in primary human hepatocytes.

Conclusion

Innate host response is intact in HCV-infected primary human hepatocytes. RIG-I plays a key role in the induction of IFN and TRAIL by viruses and apoptosis of primary human hepatocytes via activation of the TRAIL-mediated pathway. HCV NS34A protein appears to be capable of disrupting the innate antiviral host responses in primary human hepatocytes. Our study provides a novel mechanism by which primary human hepatocytes respond to natural HCV infection.  相似文献   

8.

Introduction

On-treatment HCV RNA measurements are crucial for the prediction of a sustained virological response (SVR) and to determine treatment futility during protease inhibitor-based triple therapies. In patients with advanced liver disease an accurate risk/benefit calculation based on reliable HCV RNA results can reduce the number of adverse events. However, the different available HCV RNA assays vary in their diagnostic performance.

Aim

To investigate the clinical relevance of concordant and discordant results of two HCV RNA assays during triple therapy with boceprevir and telaprevir in patients with advanced liver fibrosis/cirrhosis.

Methods

We collected on-treatment samples of 191 patients with advanced liver fibrosis/cirrhosis treated at four European centers for testing with the Abbott RealTime (ART) and COBAS AmpliPrep/COBAS TaqMan HCV v2.0 (CTM) assays.

Results

Discordant test results for HCV RNA detectability were observed in 23% at week 4, 17% at week 8/12 and 9% at week 24 on-treatment. The ART detected HCV RNA in 41% of week 4 samples tested negative by the CTM. However, the positive predictive value of an undetectable week 4 result for SVR was similar for both assays (80% and 82%). Discordance was also found for application of stopping rules. In 27% of patients who met stopping rules by CTM the ART measured levels below the respective cut-offs of 100 and 1000 IU/ml, respectively, which would have resulted in treatment continuation. In contrast, in nine patients with negative HCV RNA by CTM at week 24 treatment would have been discontinued due to detectable residual HCV RNA by the ART assay. Importantly, only 4 of these patients failed to achieve SVR.

Conclusion

Application of stopping rules determined in approval studies by one assay to other HCV RNA assays in clinical practice may lead to over and undertreatment in a significant number of patients undergoing protease inhibitor-based triple therapy.  相似文献   

9.

Background

The pro-fibrogenic cytokine connective tissue growth factor (CTGF) plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV)-induced liver fibrosis remains unclear.

Methods

In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2) by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1) as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques.

Results

We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells.

Conclusion

Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.  相似文献   

10.

Objective

Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) co-infection has been proved to be a growing public health concern. The prevalence and genotypic pattern vary with geographic locations. Limited information is available to date with regard to HCV genotype and its clinical implications among those former commercial blood donor communities. The aims of this study were to genetically define the HCV genotype and associated clinical characteristics of HIV/HCV co-infected patients from a region with commercial blood donation history in central China.

Methods

A cross sectional study, including 164 HIV infected subjects, was conducted in Shanxi province central China. Serum samples were collected and HCV antibody testing, AST and ALT testing were performed. Seropositive samples were further subjected to RT-PCR followed by direct sequence coupled with phylogenetic analysis of Core-E1 and NS5B regions performed in comparison with known reference genotypes.

Findings

A total of 139 subjects were HCV antibody positive. Genotype could be determined for 88 isolates. Phylogenetic analysis revealed that the predominant circulating subtype was HCV 1b (65.9%), followed by HCV 2a (34.1%). The HCV viral load in the subjects infected with HIV1b was significantly higher than those infected with HCV 2a (P = 0.006). No significant difference for HCV RNA level was detected between ART status, CD4+ cell count level and HIV RNA level. Serum AST and ALT level were likely to increase with HCV RNA level, although no significance was observed. Those who had conducted commercial donation later than 1991 (OR 3.43, 95% CI: 1.12–10.48) and had a short duration of donation (OR 0.35, 95% CI: 0.13–0.96) were more likely to be infected with HCV 1b.

Conclusion

These results suggest that HCV subtype 1b predominates in this population, and the impact of HIV status and ART on HCV disease progression is not significantly correlated.  相似文献   

11.

Background

Hepatitis C virus (HCV) is a plus-strand RNA virus that replicates by amplification of genomic RNA from minus strands leading to accumulation of almost one thousand copies per cell under in vitro cell culture conditions. In contrast, HCV RNA copy numbers in livers of infected patients appear to be much lower, estimated at a few copies per cell.

Methodology/Principal Findings

To gain insights into mechanisms that control HCV replication in vivo, we analyzed HCV RNA levels as well as expression of interferon beta (IFNβ) and several interferon stimulated genes (ISGs) from whole liver sections and micro-dissected subpopulations of hepatocytes in biopsy samples from 21 HCV-infected patients. The results showed that intrahepatic HCV RNA levels range form less than one copy per hepatocyte to a maximum of about eight. A correlation existed between viral RNA levels and IFNβ expression, but not between viral RNA and ISG levels. Also, IFNβ expression did not correlate with ISGs levels. Replication of HCV RNA occurred in focal areas in the liver in the presence of a general induction of ISGs.

Conclusion/Significance

The low average levels of HCV RNA in biopsy samples can be explained by focal distribution of infected hepatocytes. HCV replication directly induces IFNβ, which then activates ISGs. The apparent lack of a correlation between levels of IFNβ and ISG expression indicates that control of the innate immune response during HCV infections depends on multiple factors.  相似文献   

12.

Background

Hepatitis C virus (HCV) has six major genotypes, and patients infected with genotype 1 respond less well to interferon-based therapy than other genotypes. African American patients respond to interferon α-based therapy at about half the rate of Caucasian Americans. The effect of HCV''s genetic variation on treatment outcome in both racial groups is poorly understood.

Methodology

We determined the near full-length pre-therapy consensus sequences from 94 patients infected with HCV genotype 1a or 1b undergoing treatment with peginterferon α-2a and ribavirin through the Virahep-C study. The sequences were stratified by genotype, race and treatment outcome to identify HCV genetic differences associated with treatment efficacy.

Principal Findings

HCV sequences from patients who achieved sustained viral response were more diverse than sequences from non-responders. These inter-patient diversity differences were found primarily in the NS5A gene in genotype 1a and in core and NS2 in genotype 1b. These differences could not be explained by host selection pressures. Genotype 1b but not 1a African American patients had viral genetic differences that correlated with treatment outcome.

Conclusions & Significance

Higher inter-patient viral genetic diversity correlated with successful treatment, implying that there are HCV genotype 1 strains with intrinsic differences in sensitivity to therapy. Core, NS3 and NS5A have interferon-suppressive activities detectable through in vitro assays, and hence these activities also appear to function in human patients. Both preferential infection with relatively resistant HCV variants and host-specific factors appear to contribute to the unusually poor response to therapy in African American patients.  相似文献   

13.

Background

Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on individual steps of virus replication.

Methods

We measured replication of subgenomic genotype (GT) 1b and 2a RNAs as well as full-length GT2a genomes in the presence of BAs using quantitative RT-PCR and luciferase assays. Cell entry was determined using HCV pseudoparticles (HCVpp). Virus assembly and release were quantified using a core-specific ELISA. Replicon chimeras were employed to characterize genotype-specific modulation of HCV by BAs. Lunet CD81/GFP-NLS-MAVS cells were used to determine infection of Con1 particles.

Results

BAs increased RNA-replication of GT1b replicons up to 10-fold but had no effect on subgenomic GT2a replicons both in Huh-7 and HuH6 cells. They did not increase viral RNA translation, virus assembly and release or cell entry. Lowering replication efficiency of GT2a replicons rendered them susceptible to stimulation by BAs. Moreover, replication of full length GT1b with or without replication enhancing mutations and GT2a genomes were also stimulated by BAs.

Conclusions

Bile acids specifically enhance RNA-replication. This is not limited to GT1, but also holds true for GT2a full length genomes and subgenomic replicons with low replication capacity. The increase of HCV replication by BAs may influence the efficacy of antiviral treatment in vivo and may improve replication of primary HCV genomes in cell culture.  相似文献   

14.

Objective

To estimate the cost, effectiveness, and cost effectiveness of HIV and HCV screening of injection drug users (IDUs) in opioid replacement therapy (ORT).

Design

Dynamic compartmental model of HIV and HCV in a population of IDUs and non-IDUs for a representative U.S. urban center with 2.5 million adults (age 15–59).

Methods

We considered strategies of screening individuals in ORT for HIV, HCV, or both infections by antibody or antibody and viral RNA testing. We evaluated one-time and repeat screening at intervals from annually to once every 3 months. We calculated the number of HIV and HCV infections, quality-adjusted life years (QALYs), costs, and incremental cost-effectiveness ratios (ICERs).

Results

Adding HIV and HCV viral RNA testing to antibody testing averts 14.8–30.3 HIV and 3.7–7.7 HCV infections in a screened population of 26,100 IDUs entering ORT over 20 years, depending on screening frequency. Screening for HIV antibodies every 6 months costs $30,700/QALY gained. Screening for HIV antibodies and viral RNA every 6 months has an ICER of $65,900/QALY gained. Strategies including HCV testing have ICERs exceeding $100,000/QALY gained unless awareness of HCV-infection status results in a substantial reduction in needle-sharing behavior.

Discussion

Although annual screening for antibodies to HIV and HCV is modestly cost effective compared to no screening, more frequent screening for HIV provides additional benefit at less cost. Screening individuals in ORT every 3–6 months for HIV infection using both antibody and viral RNA technologies and initiating ART for acute HIV infection appears cost effective.  相似文献   

15.

Objective

To determine the cytokine production profile of cultured salivary gland epithelial (SGE) cells obtained from patients with Sjögren''s syndrome (SS).

Methods

SGE cells obtained from 9 SS patients and 6 normal controls were cultured in the presence of exogenous IFNγ. Cell proliferation and apoptosis in response to IFNγ were determined by WST1 assay and by FACS analysis. The concentrations of IL-6 and TGFβ secreted into culture supernatants were analyzed by ELISA.

Results

IFNγ did not significantly affect the proliferation or apoptosis of SGE cells. However, IL-6 concentrations were higher, and TGFβ concentrations were lower, in culture supernatants of SGE cells from SS patients than from normal controls.

Conclusion

Cytokine production by SGE cells from SS patients showed a skewed balance compared with normal controls, with increased IL-6 and decreased TGFβ secretion. This imbalance may be critical in the regulation of Treg/Th17 cells and may foster a pathogenic milieu that may be causative and predictive in SS.  相似文献   

16.
WL Liu  HC Yang  WC Su  CC Wang  HL Chen  HY Wang  WH Huang  DS Chen  MY Lai 《PloS one》2012,7(9):e43824

Background/Aims

Ribavirin significantly enhances the antiviral response of interferon-α (IFN-α) against Hepatitis C virus (HCV), but the underlying mechanisms remain poorly understood. Recently, p53 has been identified as an important factor involving the suppression of HCV replication in hepatocytes. We, therefore, decided to investigate whether and how ribavirin inhibits the replication of HCV by promoting the activity of p53.

Methods

HepG2 and HCV replicons (JFH1/HepG2) were utilized to study the relationship between ribavirin and p53. The effect of ribavirin on cell cycles was analyzed by flow cytometry. The activation of p53 and the signaling pathways were determined using immunoblotting. By knocking down ERK1/ERK2 and p53 utilizing RNA interference strategy, we further assessed the role of ERK1/2 and p53 in the suppression of HCV replication by ribavirin in a HCV replicon system.

Results

Using HepG2 and HCV replicons, we demonstrated that ribavirin caused the cell cycle arrest at G1 phase and stabilized and activated p53, which was associated with the antiviral activity of ribavirin. Compared to either ribavirin or IFN-α alone, ribavirin plus IFN-α resulted in greater p53 activation and HCV suppression. We further identified ERK1/2 that linked ribavirin signals to p53 activation. More importantly, knockdown of ERK1/2 and p53 partially mitigated the inhibitory effects of ribavirin on the HCV replication, indicating that ERK1/2-p53 pathway was involved in the anti-HCV effects of ribavirin.

Conclusion

Ribavirin stimulates ERK1/2 and subsequently promotes p53 activity which at least partly contributes to the enhanced antiviral response of IFN-α plus ribavirin against HCV.  相似文献   

17.

Background

Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4+ regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown.

Methodology/Principal Findings

HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4+ T cells. The production of IFN-γ was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4+ T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV+ hepatocytes upregulated the production of TGF-β and blockade of TGF-β abrogated Treg phenotype and function.

Conclusions/Significance

These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses.  相似文献   

18.

Background

Individuals with HIV infection exhibit high cytomegalovirus (CMV) IgG levels, but there are few data regarding the association of hepatitis C virus (HCV) with the immune response against CMV.

Methods

Associations of HCV with CMV seropositivity and CMV IgG levels were studied in 635 HIV-infected women, 187 of whom were HCV-seropositive, with adjustment in multivariable models for age, race/ethnicity, and HIV disease characteristics. Eighty one percent of the women reported receipt of highly active antiretroviral therapy (HAART) prior to or at CMV testing.

Results

In adjusted models women with chronic HCV had higher CMV IgG levels than those without HCV RNA (β = 2.86, 95% CI:0.89 – 4.83; P = 0.004). The association of HCV RNA with CMV IgG differed by age (P interaction = 0.0007), with a strong association observed among women in the low and middle age tertiles (≤45.3 years of age; β = 6.21, 95% CI:3.30 – 9.11, P<0.0001) but not among women in the high age tertile. CMV IgG levels were not associated with non-invasive measures of liver disease, APRI and FIB-4, or with HCV RNA level and adjustment for Epstein-Barr virus (EBV) IgG levels did not affect the association between HCV and CMV.

Conclusions

CMV IgG levels are higher in HCV/HIV co-infected women than in HIV mono-infected women. Further research on the association of HCV with CMV IgG is indicated because prior studies have found CMV IgG to be associated with morbidity and mortality in the general population and subclinical carotid artery disease in HIV-infected patients.  相似文献   

19.

Introduction

In hepatitis C virus (HCV)-related mixed cryoglobulinemia (MCG), the nonenveloped HCV core protein (HCV-Cp) is a constituent of the characteristic cold-precipitating immune complexes (ICs). A possible correlation between HCV-Cp, virologic, laboratory, and clinical parameters in both untreated MCG patients and those undergoing specific treatment was explored.

Methods

HCV-Cp was quantified by a fully automated immune assay. Correlations between HCV-Cp and HCV RNA, cryocrit, and virus genotype (gt) were investigated in 102 chronically HCV-infected MCG patients.

Results

HCV-Cp concentrations strongly correlated with HCV RNA levels in baseline samples. An average ratio of 1,425 IU and 12,850 IU HCV RNA per picogram HCV-Cp was estimated in HCV gt-1 and gt-2 patients, respectively. This equation allowed us to estimate that, on average, HCV-Cp was associated with the viral genome in only 3.4% of the former and in 35% of the latter group of patients. The direct relation between HCV-Cp and the cryocrit level suggests that the protein directly influences the amount of cryoprecipitate. Although the therapy with rituximab (RTX) as a single agent resulted in the enhancement of HCV-Cp levels, in patients treated with RTX in combination with a specific antiviral therapy (pegylated interferon-α plus ribavirin), the prompt and effective clearance of HCV-Cp was documented.

Conclusions

Our data provide evidence that HCV-Cp has a direct effect on the cold-precipitation process in a virus genotype-dependence in HCV-related MCG patients.  相似文献   

20.

Background

Shared injecting apparatus during drug use is the premier risk factor for hepatitis C virus (HCV) transmission.

Aims

To estimate the per-event probability of HCV infection during a sharing event, and the transmission probability of HCV from contaminated injecting apparatus.

Methods

Estimates were obtained using a maximum likelihood method with estimated IDU and sharing events obtained from behavioural data.

Settings

Cohort study in multiple correction centres in New South Wales, Australia

Participants

Subjects (N = 500) with a lifetime history of injecting drug use (IDU) who were followed up between 2005 and 2012. During follow-up, interviews for risk behaviours were taken and blood sampling (HCV-antibody and RNA testing) was performed.

Measurements

Self-reported frequencies of injecting drugs and sharing events, as well as other risk behaviours and details on the nature of injecting events.

Findings

The best estimate of the per-event probability of infection was 0.57% (CI: 0.32–1.05%). A sensitivity analysis on the likely effect of under-reporting of sharing of the injecting apparatus indicated that the per event infection probability may be as low as 0.17% (95% CI: 0.11%–0.25%). The transmission probability was similarly shown to range up to 6%, dependent on the presumed prevalence of the virus in injecting equipment.

Conclusions

The transmission probability of HCV during a sharing event is small. Hence, strategies to reduce the frequency and sharing of injecting equipment are required, as well as interventions focused on decreasing the per event risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号