首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessively inherited disorders characterized by impaired production of adrenal steroids. Approximately 95% of all CAH are caused by mutations of the CYP21A2 that encodes 21-hydroxylase. In this study, mutation analyses of CYP21A2 were performed in 48 CAH patients from 45 Turkish families with the clinical diagnosis of 21-hydroxylase deficiency (21OHD). While in 39 (86.7%) of 21OHD patients, disease causing CYP21A2 mutations were identified in both alleles, in two 21OHD patients CYP21A2 mutations were identified only in one allele. In four patients, mutation was not detected at all. In total, seventeen known and one novel, disease causing CYP21A2 mutations were observed. Among identified mutations, previously described c.293-13C/A>G, large rearrangements and p.Q319X mutations were the most common mutations accounting for 33.3%, 14.4% and 12.2% of all evaluated chromosomes, respectively. In six families (13.3%) a novel founder mutation, c.2T>C (p.M1?), inactivating the translation initiation codon was found. This mutation is not present in pseudogene CYP21A1P and causes the classical form of the disease in six patients. In addition, depending on the nature of the rearrangements CYP21A1P/CYP21A2 chimeras were further classified as CHc/d, and CH-1c was shown to be the most prominent chimera in our study group. In conclusion, with this study we identified a novel founder CYP21A2 mutation and suggest a further classification for CYP21A1P/CYP21A2 chimeras depending on the combination of junction site position and whether it is occurred as a result of deletion or conversion. Absence of disease causing mutation of CYP21A2 in ten of screened ninety chromosomes suggests the contribution of regulatory elements in occurrences of CAH due to the 21OHD.  相似文献   

2.
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease of steroid biosynthesis in humans. More than 90% of all CAH cases are caused by mutations of the 21-hydroxylase gene (CYP21A2), and approximately 75% of the defective CYP21A2 genes are generated through an intergenic recombination with the neighboring CYP21A1P pseudogene. In this study, the CYP21A2 gene was genotyped in 50 patients in Tunisia with the clinical diagnosis of 21-hydroxylase deficiency. CYP21A2 mutations were identified in 87% of the alleles. The most common point mutation in our population was the pseudogene specific variant p.Q318X (26%). Three novel single nucleotide polymorphism (SNP) loci were identified in the CYP21A2 gene which seems to be specific for the Tunisian population. The overall concordance between genotype and phenotype was 98%. With this study the molecular basis of CAH has been characterized, providing useful results for clinicians in terms of prediction of disease severity, genetic and prenatal counseling.  相似文献   

3.
Deleterious mutations in the CYP21 (steroid 21-hydroxylase) gene cause congenital adrenal hyperplasia (CAH). These mutations usually result from recombinations between CYP21 and an adjacent pseudogene, CYP21P, including deletions and transfers of deleterious mutations from CYP21P to CYP21 (gene conversions). Additional rare mutations that are not gene conversions account for 5-10% of 21-hydroxylase deficiency alleles. Recently, four novel CYP21 point mutations leading to amino acid changes were identified in a population of 57 Spanish families with CAH. A nonsense mutation, K74X, was also identified. The enzymatic activities of 21-hydroxylase mutants G90V, G178A, G291C, and R354H were examined in transiently transfected CHOP cells using progesterone and 17alpha-hydroxyprogesterone as substrates. The G90V, G291C, and R354H mutations effectively eliminated 21-hydroxylase activity. However, the G178A mutant retained significant activity when 17alpha-hydroxyprogesterone was the substrate. These results correlate well with the identification of G90V, G291C, and R354H in patients with severe "salt-wasting" disease and G178A in a patient with the milder simple virilizing form.  相似文献   

4.
Three novel mutations in Japanese patients with 21-hydroxylase deficiency   总被引:2,自引:0,他引:2  
OBJECTIVE: This study analyzed the mutation of 21-hydroxylase deficiency (21-OHD) in 36 unrelated Japanese patients with congenital adrenal hyperplasia (CAH). METHODS: All the exons of the functional CYP21 gene (CYP21A2) were analyzed by polymerase chain reaction (PCR) and PCR direct sequencing. RESULTS: Apparent gene deletions and conversions were present in 23.6% of the 72 CAH alleles, in which the most frequent mutation was the IVS2-13 A/C>G (27.8%), followed by I172N (26.3%), consistent with the frequencies reported for other countries. Previously described mutations were not present in three unrelated cases. Sequence analysis of the complete functional CYP21A2 gene revealed three, not yet described mutations that represent a common pseudogene sequence. These three putative novel mutations are located in exon 1 (M1I), in exon 5 (1210-1211insT), and in exon 3 (R124H). CONCLUSIONS: In this study, we have identified three putative novel mutations. It remains to be determined whether these three mutations are responsible for the significant number of as yet uncharacterized CAH patients in Japan.  相似文献   

5.
Congenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency is a common inherited defect of adrenal steroid hormone biosynthesis. Unusually for genetic disorders, the majority of mutations causing CAH apparently result from recombinations between the CYP21 gene encoding the 21-hydroxylase enzyme and the closely linked, highly homologous pseudogene CYP21P. The CYP21 and CYP21P genes are located in the major histocompatibility complex class III region on chromosome 6p21.3. We analyzed the mutations and recombination breakpoints in the CYP21 gene and determined the associated haplotypes in 51 unrelated Finnish families with CAH. They represent no less than half of all CYP21 deficiency patients in Finland. The results indicate the existence of multiple founder mutation-haplotype combinations in the population of Finnish CAH patients. The three most common haplotypes constituted half of all affected chromosomes; only one-sixth of the haplotypes represented single cases. Each of the common haplotypes was shown consistently to carry a typical CYP21 mutation and only in some cases was additional variation observed. Surprisingly, comparisons with previous published data revealed that several of the frequent mutation-haplotype combinations in Finland are in fact also found in many other populations of patients of European origin, thus suggesting that these haplotypes are of ancient origin. This is in clear contrast to many reports, including the present one, where a high frequency of de novo mutations in the CYP21 gene has been reported. In addition, two unique sequence aberrations in CYP21 (W302X and R356Q), not known to exist in the CYP21P pseudogene, were detected. Received: 5 September 1996 / Revised: 11 November 1996  相似文献   

6.
More than 90% of cases of congenital adrenal hyperplasia (CAH) are caused by mutations of the CYP21 gene. The occurrence of defective CYP21 genes, including 15 mutations, has been attributed to intergenic recombination of DNA sequences from CYP21P, and shows no influence on the RP1-C4A-CYP21P-XA-RP2-C4BCYP21- TNXB gene locus on chromosome 6p21.3. However, multiple gene deletions in this region produce at least three categories of gene arrangements: (a) C4A-CYP21P/CYP21-TNXB, in which there is a CYP21P/CYP21 fusion gene; (b) C4A-XCYP21-TNXB, where XCYP21 indicates that the CYP21 gene contains mutations of IVS2 (-12A/C>G and 707-714delGAGACTAC); and (c) C4A-CYP21P-TNXA/TNXB, in which the TNX A and B genes are fused. Among them, seven different structures of the CYP21 haplotype were found at these three loci. Formation of the C4A-CYP21P/CYP21-TNXB locus produced four distinct CYP21P/CYP21 chimeras. The C4A-XCYP21-TNXB locus contained the IVS2 mutation -12A/C>G and 707-714delGAGACTAC from the XCYP21 gene; and two kinds of TNXA/TNXB hybrids were found in the C4A-CYP21P-TNXA/TNXB locus. The seven different CYP21 alleles produced 3.2 kb Taq I fragments caused by deletion of the RP2-XA-C4B locus. Therefore, production of a 3.2-kb CYP21 allele shows diversity, but is not a unique feature of the CYP21P gene. Most of these gene arrangements probably exist in the C4A-XCYP21-TNXB and C4A-CYP21P/CYP21-TNXB gene loci. The existence of the C4A-CYP21P-TNXA/TNXB locus might not be common in CAH patients with 21-hydroxylase deficiency.  相似文献   

7.

Background

Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia (CAH). Detection of underlying mutations in CYP21A2 gene encoding steroid 21-hydroxylase enzyme is helpful both for confirmation of diagnosis and management of CAH patients. Here we report a novel 9-bp insertion in CYP21A2 gene and its structural and functional consequences on P450c21 protein by molecular modeling and molecular dynamics simulations methods.

Methods

A 30-day-old child was referred to our laboratory for molecular diagnosis of CAH. Sequencing of the entire CYP21A2 gene revealed a novel insertion (duplication) of 9-bp in exon 2 of one allele and a well-known mutation I172N in exon 4 of other allele. Molecular modeling and simulation studies were carried out to understand the plausible structural and functional implications caused by the novel mutation.

Results

Insertion of the nine bases in exon 2 resulted in addition of three valine residues at codon 71 of the P450c21 protein. Molecular dynamics simulations revealed that the mutant exhibits a faster unfolding kinetics and an overall destabilization of the structure due to the triple valine insertion was also observed.

Conclusion

The novel 9-bp insertion in exon 2 of CYP21A2 genesignificantly lowers the structural stability of P450c21 thereby leading to the probable loss of its function.  相似文献   

8.
Steroid 21-hydroxylase deficiency, due to the genetic impairment of the CYP21 gene, is a major cause of congenital adrenal hyperplasia (CAH). In about 80% of the cases, the defect is related with the transfer of deleterious point mutations from the CYP21P pseudogene to the active CYP21 gene. Sixteen different point mutations have been searched for in 60 Spanish patients with the classic form of CAH and 171 unaffected family members, using selective amplification of the CYP21 gene followed by allele-specific oligonucleotide hybridization (PCR-ASOH) and sequencing analysis. While 31.9% of the disease alleles carry CYP21 deletions or large gene conversions, around 58% of the alleles carry single point mutations. Corresponding segregation of mutations was found in every case indicating that none of them has apparently appeared de novo. The most frequent mutations found in our sample are i2G, V281L, R356W, Q318X, P453S and F306+t, with rates of 30, 14.2, 10, 9.2, 9.2 and 7. 5%, respectively. We found similar frequencies for the A and C polymorphism at position 656 (40 and 31.5%, respectively) in wild-type alleles for the i2G mutation. Around 10% of the alleles, for which no mutations were identified by searching for the sixteen previously known mutations, are currently being sequenced and new possible mutations and polymorphisms have been identified.  相似文献   

9.
OBJECTIVES: A rapid and convenient approach for the detection of the most common CYP21 gene mutations in patients with congenital adrenal hyperplasia (CAH) with classical forms of 21-hydroxylase deficiency was used. In addition, a new semiquantitative strategy for the detection of del8-bp was designed. These procedures were used for prenatal diagnosis and genotype-phenotype correlation in northeastern Iran. Design: Molecular analysis of the CYP21 gene for the detection of the 9 most common mutations (CYP21gene deletion, P30L, i2g, del-8bp, I172N, E6 cluster, V281L, Q318X and R356W) was performed on 30 CAH patients and for prenatal diagnosis in 2 cases. METHODS: Restriction fragment length polymorphism, amplification-created restriction sites, allele-specific polymerase chain reaction (PCR) and semiquantitative PCR were performed. RESULTS: We characterized 90% of the CAH chromosomes. The most frequent mutations in the CYP21 gene were del-CYP21 (25%), I172N (22%) and i2g (15%). Unlike in other ethnic groups, there was no R356W mutation, however, a higher rate of del-8bp (10%) was found in our population. Wealso found 6 complex alleles in our patients. For 2 families prenatal CYP21 gene analysis resulted in the diagnosis of healthy fetuses and termination of dexamethasone treatment in the 15th week of gestation. Genotype-phenotype correlation was observed. The rate of homozygosity (50%) was greater than the predicted values due to the higher rate of parental consanguinity in our population. CONCLUSIONS: These molecular procedures proved to be sensitive and rapid for the detection of the most common mutations of the CYP21 gene and prenatal diagnosis. Increased 17-hydroxyprogesterone, found in neonatal CAH screening, can be confirmed by these mutation analyses.  相似文献   

10.
Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. We have analyzed CYP21 gene sequences in 65 CAH families in Taiwan. All ten exons of the CYP21 gene were analyzed by differential polymerase chain reaction followed by single-strand conformation polymorphism electrophoresis and the amplification-created restriction site method. About 95% (123 chromosomes) contain mutations due to conversion of DNA sequences into its neighboring homologous pseudogene, CYP21P. Four novel mutations representing 5% of the total chromosomes have also been identified. The mutations were confirmed by sequencing an aberrant DNA fragment. These four mutations included a base change of the splicing donor site at intron 2 from GT to AT, a base substitution of C to T at codon 316, deletion of ten bases (TCCAGCTCCC) at codons 330–333 of exon 8, and duplication of 16 bases (CCTGGATGACACGGTC) at codons 393–397 of exon 9. The loss of the splicing donor site at intron 2 and the premature stop at codon 316 may result in aberrant splicing to reduce enzyme activity and a truncated protein with no enzyme activity, respectively. Likewise, both the duplication and the deletion forms create a frameshift and premature stop during translation. The resulting proteins lack the heme-binding domain and hence are expected to lose enzymatic activity. Since these mutations are not found in the neighboring CYP21P pseudogene, gene conversion should not be the cause of these novel mutations. Received: 20 April 1998 / Accepted: 30 May 1998  相似文献   

11.
Summary Defects in the enzyme, steroid 21-hydroxylase, result in congenital adrenal hyperplasia (CAH), a common autosomal recessive disorder of cortisol biosynthesis. The gene encoding this protein (CYP21B) and a closely linked pseudogene (CYP21A) have been mapped in the HLA complex on chromosome 6p, adjacent to the complement genes C4B and C4A, about 80 kb from the factor B gene. Molecular analyses of patients with CAH have shown that the cause of the defect may be either a deletion, a point mutation or a conversion of the active gene. Linkage of the disease to HLA has previously been studied by several groups. We have analyzed DNAs from patients with classical and non-classical CAH and from their family members, by probing with CYP21, C4 and BF cDNAs. In 70% of the CAH haplotypes studied, the defective CYP21B gene was indistinguishable from its structurally intact corresponding gene in Southern blot analysis, and presumably bore point mutations. In the remaining chromosomes, evidence for gene conversions, deletions and various deleterious mutations of the CYP21B gene is given. Moreover, our linkage studies show that a polymorphic TaqI cleavage site in the factor B gene, recently described by us, may be a new and useful genetic marker, because we found this TaqI restriction site only in unaffected haplotypes carrying functional CYP21B genes and, therefore, in negative association with the defective CYP21B gene.  相似文献   

12.
To characterize mutations in the CYP21B gene that are responsible for congenital adrenal hyperplasia (CAH), DNA samples from 91 French patients have been studied by allelic-specific oligonucleotide hybridization and Southern blot analysis. Seven sites mostly found in the CYP21A pseudogene and deletions of the functional CYP21B gene have been screened. Gene conversions involving small DNA segments accounted for 57% of the tested mutations and probably cause 74% of the mutations responsible for the disease. Complete deletion of the CYP21B gene accounted for 18% of the CAH mutations in the whole sample and for 21% in the classical form of the disease. Three mutations were found associated with specific clinical forms of the disease: a G-C substitution in the seventh exon was associated with the late-onset form of the disease, and both an 8-bp depletion in the third exon and complete deletion of CYP21B were associated with the salt-wasting form.  相似文献   

13.
Congenital adrenal hyperplasia (CAH) is a common recessive genetic disease caused mainly by steroid 21-hydroxylase (P450c21) deficiency. Many forms of CAH exist resulting from various mutations of the CYP21B gene. We sequenced CYP21B cDNA from a normal person and its genes from a patient with simple virilizing CAH. When comparing several CYP21B sequences, we found it was polymorphic. In the patient, a single base substitution replaced Ile172 (ATC) with Asn (AAC) in one allele while Arg356 (CGG) was converted to Trp (TGG) in the other. A normal P450c21 cDNA clone was transfected into COS-1 cells to produce 21-hydroxylase activity toward its substrates, progesterone and 17-hydroxyprogesterone. Mutants corresponding to Asn172 or Trp356 mutation were constructed by site-directed mutagenesis of the normal c21 cDNA clone. They failed to produce active enzyme toward either substrate upon transfection into COS-1 cells, demonstrating that these mutations caused CAH. Aligning sequences with other P450s, Ile172 could be located in the membrane anchoring domain and Arg356 in the substrate-binding site of P450c21. Both mutations are present in the CYP21A1P pseudogene, suggesting that they may be transferred from CYP21A1P by gene conversion events.  相似文献   

14.
Steroid 21-hydroxylase (CYP21A2) is a key enzyme of glucocorticoid and mineralocorticoid biosynthesis in the adrenal cortex and belongs to the family of microsomal cytochrome P450. CYP21A2 deficiency is the most common cause of human congenital adrenal hyperplasia (CAH). Human CYP21A2 and its C169R mutant, observed in a patient with classic CAH, were expressed in Sf9 and Hi5 insect cells infected with recombinant baculoviruses. Functional CYP21A2 was produced to 28% of the total microsomal protein under optimal conditions. The C169R mutation did not affect the efficiency of CYP21A2 synthesis in insect cells, nor did it prevent CYP21A2 incorporation in membranes of the endoplasmic reticulum. Functional analysis in vitro showed that the mutant enzyme almost completely lacked the catalytic activity towards two substrates, progesterone and 17-hydroxyprogesterone.  相似文献   

15.
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is an autosomal recessive disorder of cortisol biosynthesis caused by CYP21A2 mutations. An increase in gene copy number variation (CNV) exists at the CYP21A2 locus. CNV of C4, a neighboring gene that encodes complement component 4, is associated with autoimmune disease susceptibility. In this study, we performed comprehensive genetic analysis of the RP-C4-CYP21-TNX (RCCX) region in 127 unrelated 21-OHD patients (100 classic, 27 nonclassic). C4 copy number was determined by Southern blot. C4 CNV and serum C4 levels were evaluated in relation to CYP21A2 mutations and relevant phenotypes. We found that the most common CYP21A2 mutation associated with the nonclassic form of CAH, V281L, was associated with high C4 copy number (p?=?7.13?×?10?16). Large CYP21A2 deletion, a common mutation associated with the classic form of CAH, was associated with low C4 copy number (p?=?1.61?×?10?14). Monomodular RCCX with a short C4 gene, a risk factor for autoimmune disease, was significantly less frequent in CAH patients compared to population estimates (2.8 vs. 10.6?%; p?=?1.08?×?10?4). In conclusion, CAH patients have increased C4 CNV, with mutation-specific associations that may be protective for autoimmune disease. The study of CYP21A2 in relation to neighboring genes provides insight into the genetics of CNV hotspots, an important determinant of human health.  相似文献   

16.

Background

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2). We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH.

Methods

A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay.

Results

Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6%) chromosomes. The most frequent mutation was I2 splice (27%) followed by Ile173Asn (26%), Arg 357 Trp (19%), Gln319stop, 16% and Leu308InsT (12%), whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state.

Conclusion

Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.  相似文献   

17.
Congenital Adrenal Hyperplasia (CAH) is one of the most widespread severe autosomal recessive hereditary diseases. CAH is caused by the impaired biosynthesis of the key human hormones cortisol and aldosterone and is accompanied by the excess synthesis of androgens. Over 90% of CAH cases are caused by a deficiency of the steroid 21-hydrohylase (P450c21). The degree of damage in this enzyme is responsible for the severity of the clinical manifestation of CAH from potentially lethal to mild symptoms. Various mutations of the gene encoding this enzyme are the main source of the reduced activity of the steroid-21-hydrolase. The location of the highly homological pseudogene CYP21P in close proximity to the functional gene impedes the DNA diagnostics of CAH. To detect the eight most frequent CYP21 gene mutations associated with CAH, we developed a new real-time PCR-based system of DNA diagnostics using new allele-specific primers and TaqMan probes for the analyzed mutations. The method was primarily tested on artificial DNA templates, where the analyzed mutations were introduced by site-directed mutagenesis. Then, it was tested on DNA samples from 43 patients with clinical and biochemical manifestations of CAH; seven patients were used as a control. Two mutant alleles were detected in two different individuals: the nonsense Q318X and the missense V281L mutations.  相似文献   

18.
Congenital adrenal hyperplasia (CAH), one of the most common autosomal recessive disorders, is caused primarily by defects in the gene encoding steroid 21-hydroxylase, CYP21B. The molecular diagnosis of CAH, important for prenatal diagnosis, carrier detection, and a better understanding of the various clinical CAH forms, is complicated by the close proximity of a highly similar pseudogene, CYP21A, containing (and probably donating, by gene conversion-like events) most of the defects underlying CAH. In this study, we describe an efficient strategy to identify molecular defects causing CAH: polymerase chain reaction-amplified CYP21 loci are cloned and hybridized to a set of oligonucleotides, allowing rapid and allele-specific identification of all known CYP21B mutations relevant to 21-hydroxylase function. Possible new mutations can be identified by subsequent nucleic acid sequencing provided they reside within the cloned CYP21B fragment (from the TATA box to the 8th of the 10 CYP21B gene exons). Using this method, the CYP21B gene mutations of a heterozygous carrier and 25 CAH patients have been identified by oligonucleotide hybridization. All disease haplotypes seem to have been generated by recombinational events involving the CYP21A pseudogene. In 5 individuals, these data were subsequently verified by nucleic acid sequencing. The procedure can be used for diagnostic applications and may facilitate identification of new CYP21B defects.  相似文献   

19.
The spectrum of mutations in the steroid 21-hydroxylase gene (CYP21B) and the frequency of 11 mutations among 66 patients with different forms of congenital adrenal hyperplasia (CAH) were analyzed by means of PCR amplification. Each of the CAH forms was characterized by specific spectrum of diagnostically important mutations. The salt-losing (SL) form of the disease was most frequently associated with gene deletion (39%) and the 668-13C-G mutation in the second intron (23.5%), whereas the majority of simple virilizing (SV) CAH cases were associated with the 1172N mutation in exon 4 (22%), gene deletion (16.5%), and the 668-13C-G mutation (16.5%). Mutations in the steroid 21-hydroxylase gene were detected in 70% of the chromosomes from the patients with the SL and SV forms of CAH, and only in 1.3% of the chromosomes from the patients with the nonclassic (NC) form. A total of 78 mutant chromosomes from the NC CAH patients were examined, and only one case of a gene deletion in the heterozygous state was revealed. In the individuals examined, the V281L and P30L mutations described in the NC CAH patients from other populations were not detected. This result can be explained either by the fact that NC CAH cases in Russia are associated with other major mutations, or by difficult clinical diagnosis questionable CAH cases.  相似文献   

20.
Lee HH  Lee YJ  Lin CY 《Genomics》2004,83(5):944-950
Detection of the CYP21 deletion in congenital adrenal hyperplasia (CAH) in the RCCX module has been previously done by Southern blot analysis with multiple probes and separate digestions with the restriction endonucleases TaqI and BglII, which is laborious and indirect. Here, we describe an established PCR-based amplification method to analyze directly a CAH patient with a single CYP21 deletion, followed by RFLP analysis to characterize the interconversion region between tenascin A (TNXA) and tenascin B (TNXB). Data indicate that TaqI digestion of the defective CYP21 gene in the CAH patient produced 3.2-kb fragments. The CYP21 allele carried mutations in the CYP21P gene as determined by analysis with the amplification-created restriction site method. In addition, RFLP analysis indicated that the TNXB gene in the defective allele was replaced by TNXA to produce a TNXA/TNXB hybrid. We conclude that deletion of the RCCX module in this CAH patient included the RP2, C4B, and CYP21 genes and part of the TNXB gene. The junction of the recombination of the TNXA/TNXB hybrid may be located between IVS44 and exon 44 of the TNXB gene. This rapid, nonradioactive detection method will be beneficial for diagnostic purposes that are limited to the population originally studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号