首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.  相似文献   

2.
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.  相似文献   

3.
4.
Enterovirus 71 (EV71), a single, positive-stranded RNA virus, has been regarded as the most important neurotropic enterovirus after the eradication of the poliovirus. EV71 infection can cause hand, foot, and mouth disease or herpangina. Cytokine storm with elevated levels of proinflammatory and inflammatory cytokines, including TNF-α, has been proposed to explain the pathogenesis of EV71-induced disease. TNF-α-mediated NF-κB signaling pathway plays a key role in inflammatory response. We hypothesized that EV71 might also moderate host inflammation by interfering with this pathway. In this study, we tested this hypothesis and identified EV71 2C protein as an antagonist of TNF-α-mediated activation of NF-κB signaling pathway. Expression of 2C protein significantly reduced TNF-α-mediated NF-κB activation in 293T cells as measured by gene reporter and gel mobility shift assays. Furthermore, overexpression of TNFR-associated factor 2-, MEK kinase 1-, IκB kinase (IKK)α-, or IKKβ-induced NF-κB activation, but not constitutively active mutant of IKKβ (IKKβ SS/EE)-induced NF-κB activation, was inhibited by 2C protein. These data together suggested that the activation of IKKβ is most likely targeted by 2C; this notion was further strengthened by immunoblot detection of IKKβ phosphorylation and IκBα phosphorylation and degradation. Coimmunoprecipitation and colocalization of 2C and IKKβ expressed in mammalian cells provided compelling evidence that 2C interacts with IKKβ. Collectively, our data indicate that EV71 2C protein inhibits IKKβ activation and thus blocks NF-κB activation.  相似文献   

5.
IκB kinase (IKK) complex, the master kinase for NF-κB activation, contains two kinase subunits, IKKα and IKKβ. In addition to mediating NF-κB signaling by phosphorylating IκB proteins during inflammatory and immune responses, the activation of the IKK complex also responds to various stimuli to regulate diverse functions independently of NF-κB. Although these two kinases share structural and biochemical similarities, different sub-cellular localization and phosphorylation targets between IKKα and IKKβ account for their distinct physiological and pathological roles. While IKKβ is predominantly cytoplasmic, IKKα has been found to shuttle between the cytoplasm and the nucleus. The nuclear-specific roles of IKKα have brought increasing complexity to its biological function. This review highlights major advances in the studies of the nuclear functions of IKKα and the mechanisms of IKKα nuclear translocation. Understanding the nuclear activity is essential for targeting IKKα for therapeutics.  相似文献   

6.
Nuclear factor (NF)-κB is a key regulator of synovial inflammation. We investigated the effect of local NF-κB inhibition in rat adjuvant arthritis (AA), using the specific IκB kinase (IKK)-β blocking NF-κB essential modulator-binding domain (NBD) peptide. The effects of the NBD peptide on human fibroblast-like synoviocytes (FLS) and macrophages, as well as rheumatoid arthritis (RA) whole-tissue biopsies, were also evaluated. First, we investigated the effects of the NBD peptide on RA FLS in vitro. Subsequently, NBD peptides were administered intra-articularly into the right ankle joint of rats at the onset of disease. The severity of arthritis was monitored over time, rats were sacrificed on day 20, and tissue specimens were collected for routine histology and x-rays of the ankle joints. Human macrophages or RA synovial tissues were cultured ex vivo in the presence or absence of NBD peptides, and cytokine production was measured in the supernatant by enzyme-linked immunosorbent assay. The NBD peptide blocked interleukin (IL)-1-β-induced IκBα phosphorylation and IL-6 production in RA FLS. Intra-articular injection of the NBD peptide led to significantly reduced severity of arthritis (p < 0.0001) and reduced radiological damage (p = 0.04). This was associated with decreased synovial cellularity and reduced expression of tumor necrosis factor (TNF)-α and IL-1-β in the synovium. Incubation of human macrophages with NBD peptides resulted in 50% inhibition of IL-1-β-induced TNF-α production in the supernatant (p < 0.01). In addition, the NBD peptide decreased TNF-α-induced IL-6 production by human RA synovial tissue biopsies by approximately 42% (p < 0.01). Specific NF-κB blockade using a small peptide inhibitor of IKK-β has anti-inflammatory effects in AA and human RA synovial tissue as well as in two important cell types in the pathogenesis of RA: macrophages and FLS. These results indicate that IKK-β-targeted NF-κB blockade using the NBD peptide could offer a new approach for the local treatment of arthritis.  相似文献   

7.
To determine the chemical constituents responsible for pharmacological effects of Inula britannica-F., three specific sesquiterpene lactones in Inula britannica were isolated from chloroform extract and identified, including britannilactone (BL), 1-O-acetylbritannilactone (ABLO), and 1,6-O,O-diacetylbritannilactone (ABLOO). Electrophoretic mobility shift assay (EMSA) was performed to detect the nuclear translocation of nuclear factor-κB (NF-κB) p65. The expressions of IκBα, pIκBα, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IκB kinase α/β (IKKα/β) and NF-κB kinase (NIK) were detected by Western blot and RT-PCR. We found that acetyl side groups enhanced the inhibitory action of the agents on LPS/IFN-γ-induced iNOS and COX-2 expression. Their inhibiting activity was positive correlation with the acetyl side group number. The effects of LPS/IFN-γ were reversed by ABLOO, and BL without acetyl side groups showed only a weak inhibitory action. Further study indicated that ABLOO markedly inhibited the phosphorylation of IKKβ down to based level, but not IKKα, corresponding with decreased in IκBα degradation and phosphorylation induced by LPS/IFN-γ, resulting in the suppression of NF-κB nuclear translocation and activity. These results suggest that the acetyl moieties add to the lipophilicity, and consequently enhance cellular penetration, so that ABLOO possess the most anti-inflammatory effect and may be a potent lead structure for the development of therapeutic and cytokine-suppressing remedies valuable for the treatment of various inflammatory diseases.  相似文献   

8.
To investigate the roles of ΔNp63α during corneal wound healing and the genes regulated by ΔNp63α in limbal epithelial cells. Adenovirus or shRNA targeting ΔNp63α were pre-injected into the anterior chamber of rat eyeballs and the central corneal epithelium was then wounded with NaOH. The effects of ΔNp63α expression during wound healing were observed by propidium iodide staining. In addition, limbal epithelial cells were cultured and ectopically expressed ΔNp63α by transfecting Ad-ΔNp63α. Total RNA was extracted from transfected epithelial cells and subjected to a gene expression microarray assay. The results showed that over-expression of ΔNp63α accelerated the process of corneal wound healing while knockdown of ΔNp63α impaired the process. ΔNp63α positively up-regulated several cell growth promoter genes and could be referred as a positive regulator of limbal epithelial cell proliferation. It might also inhibit cell differentiation and cell death by differential target gene regulation.  相似文献   

9.
10.
In the present study, we have examined whether IKKβ [IκB (inhibitor of nuclear factor κB) kinase β] plays a role in feedback inhibition of the insulin signalling cascade. Insulin induces the phosphorylation of IKKβ, in vitro and in vivo, and this effect is dependent on intact signalling via PI3K (phosphoinositide 3-kinase), but not PKB (protein kinase B). To test the hypothesis that insulin activates IKKβ as a means of negative feedback, we employed a variety of experimental approaches. First, pharmacological inhibition of IKKβ via BMS-345541 did not potentiate insulin-induced IRS1 (insulin receptor substrate 1) tyrosine phosphorylation, PKB phosphorylation or 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes. BMS-345541 did not prevent insulin-induced IRS1 serine phosphorylation on known IKKβ target sites. Secondly, adenovirus-mediated overexpression of wild-type IKKβ in differentiated 3T3-L1 adipocytes did not suppress insulin-stimulated 2-deoxyglucose uptake, IRS1 tyrosine phosphorylation, IRS1 association with the p85 regulatory subunit of PI3K or PKB phosphorylation. Thirdly, insulin signalling was not potentiated in mouse embryonic fibroblasts lacking IKKβ. Finally, insulin treatment of 3T3-L1 adipocytes did not promote the recruitment of IKKβ to IRS1, supporting our findings that IKKβ, although activated by insulin, does not promote direct serine phosphorylation of IRS1 and does not contribute to the feedback inhibition of the insulin signalling cascade.  相似文献   

11.
12.
13.
14.
Mitochondrial dysfunction is a hallmark of amyloid β peptide (Aβ)-induced neuronal toxicity in Alzheimer’s disease (AD). However, the underlying mechanism (s) of Aβ-induced mitochondrial dysfunction is still not fully understood. There is evidence that nuclear factor-κB (NF-κB) is involved in Aβ-induced neurotoxicity and is present in mitochondria. Using HT22 murine hippocampal neuronal cells and isolated mitochondria, the present study investigated whether intramitochondrial inhibitor of NF-κB (IκB)/NF-κB signaling pathway was involved in mitochondrial dysfunction induced by Aβ. It was found that Aβ impaired mitochondrial function through a NF-κB-dependent signaling pathway. Intramitochondrial IκBα/NF-κB pathway, induced by Aβ, decreased the expression of cytochrome c oxidase subunit (COXIII) and inhibited COX activity. These results provide new insights into the mechanism underlying the neurotoxic effect of Aβ and open up new therapeutic perspectives for AD.  相似文献   

15.
This study aimed to investigate the mechanisms that coordinate lymphangiogenesis. Using mouse models of lymphatic regeneration and inflammatory lymphangiogenesis, we explored the hypothesis that hypoxia inducible factor-α (HIF-1α) is a central regulator of lymphangiogenesis. We show that HIF-1α inhibition by small molecule inhibitors (YC-1 and 2-methyoxyestradiol) results in delayed lymphatic repair, decreased local vascular endothelial growth factor-C (VEGF-C) expression, reduced numbers of VEGF-C(+) cells, and reductions in inflammatory lymphangiogenesis. Using transgenic HIF-1α/luciferase mice to image HIF-1α expression in real time in addition to Western blot analysis and pimonidazole staining for cellular hypoxia, we demonstrate that hypoxia stabilizes HIF-1α during initial stages of wound repair (1-2 wk); whereas inflammation secondary to gradients of lymphatic fluid stasis stabilizes HIF-1α thereafter (3-6 wk). In addition, we show that CD4(+) cell-mediated inflammation is necessary for this response and regulates HIF-1α expression by macrophages, as CD4-deficient or CD4-depleted mice demonstrate 2-fold reductions in HIF-1α expression as compared to wild-types. In summary, we show that HIF-1α is a critical coordinator of lymphangiogenesis by regulating the expression of lymphangiogenic cytokines as part of an early response mechanism to hypoxia, inflammation, and lymphatic fluid stasis.  相似文献   

16.
17.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

18.
19.
Despite their homology, IκB kinase α (IKKα) and IKKβ have divergent roles in NF-κB signaling. IKKβ strongly activates NF-κB while IKKα can downregulate NF-κB under certain circumstances. Given this, identifying independent substrates for these kinases could help delineate their divergent roles. Peptide substrate array technology followed by bioinformatic screening identified TRAF4 as a substrate for IKKα. Like IKKα, TRAF4 is atypical within its family because it is the only TRAF family member to negatively regulate innate immune signaling. IKKα's phosphorylation of serine-426 on TRAF4 was required for this negative regulation. Binding to the Crohn's disease susceptibility protein, NOD2, is required for TRAF4 phosphorylation and subsequent inhibition of NOD2 signaling. Structurally, serine-426 resides within an exaggerated β-bulge in TRAF4 that is not present in the other TRAF proteins, and phosphorylation of this site provides a structural basis for the atypical function of TRAF4 and its atypical role in NOD2 signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号