首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATP-competitive inhibitors dasatinib and nilotinib, which bind to catalytically different conformations of the Abl kinase domain, have recently been approved for the treatment of imatinib-resistant CML. These two new drugs, albeit very efficient against most of the imatinib-resistant mutants of Bcr–Abl, fail to effectively suppress the Bcr–Abl activity of the T315I (or gatekeeper) mutation. Generating new ATP site-binding drugs that target the T315I in Abl has been hampered, amongst others, by target selectivity, which is frequently an issue when developing ATP-competitive inhibitors. Recently, using an unbiased cellular screening approach, GNF-2, a non-ATP-competitive inhibitor, has been identified that demonstrates cellular activity against Bcr–Abl transformed cells. The exquisite selectivity of GNF-2 is due to the finding that it targets the myristate binding site located near the C-terminus of the Abl kinase domain, as demonstrated by genetic approaches, solution NMR and X-ray crystallography. GNF-2, like myristate, is able to induce and/or stabilize the clamped inactive conformation of Abl analogous to the SH2-Y527 interaction of Src. The molecular mechanism for allosteric inhibition by the GNF-2 inhibitor class, and the combined effects with ATP-competitive inhibitors such as nilotinib and imatinib on wild-type Abl and imatinib-resistant mutants, in particular the T315I gatekeeper mutant, are reviewed.  相似文献   

2.
Levinson NM  Boxer SG 《PloS one》2012,7(4):e29828
Chronic myeloid leukemia (CML) is caused by the kinase activity of the BCR-Abl fusion protein. The Abl inhibitors imatinib, nilotinib and dasatinib are currently used to treat CML, but resistance to these inhibitors is a significant clinical problem. The kinase inhibitor bosutinib has shown efficacy in clinical trials for imatinib-resistant CML, but its binding mode is unknown. We present the 2.4 Å structure of bosutinib bound to the kinase domain of Abl, which explains the inhibitor''s activity against several imatinib-resistant mutants, and reveals that similar inhibitors that lack a nitrile moiety could be effective against the common T315I mutant. We also report that two distinct chemical compounds are currently being sold under the name “bosutinib”, and report spectroscopic and structural characterizations of both. We show that the fluorescence properties of these compounds allow inhibitor binding to be measured quantitatively, and that the infrared absorption of the nitrile group reveals a different electrostatic environment in the conserved ATP-binding sites of Abl and Src kinases. Exploiting such differences could lead to inhibitors with improved selectivity.  相似文献   

3.
Allosteric kinase inhibitors hold promise for revealing unique features of kinases that may not be apparent using conventional ATP-competitive inhibitors. Here we explore the activity of a previously reported allosteric inhibitor of BCR-Abl kinase, GNF-2, against two cellular isoforms of Abl tyrosine kinase: one that carries a myristate in the N terminus and the other that is deficient in N-myristoylation. Our results show that GNF-2 inhibits the kinase activity of non-myristoylated c-Abl more potently than that of myristoylated c-Abl by binding to the myristate-binding pocket in the C-lobe of the kinase domain. Unexpectedly, indirect immunofluorescence reveals a translocation of myristoylated c-Abl to the endoplasmic reticulum in GNF-2-treated cells, whereas GNF-2 has no detectable effect on the localization of non-myristoylated c-Abl. These results indicate that GNF-2 competes with the NH2-terminal myristate for binding to the c-Abl kinase myristate-binding pocket and that the exposed myristoyl group accounts for the localization to the endoplasmic reticulum. We also demonstrate that GNF-2 can inhibit enzymatic and cellular kinase activity of Arg, a kinase highly homologous to c-Abl, which is also likely to be regulated through intramolecular binding of an NH2-terminal myristate lipid. These results suggest that non-ATP-competitive inhibitors, such as GNF-2, can serve as chemical tools that can discriminate between c-Abl isoform-specific behaviors.The catalytic activity of a protein kinase can be modulated by binding of a ligand to a site distant from the active site, also referred to as the allosteric site (1). The ligand is referred to as an allosteric kinase inhibitor and induces a protein conformation that is not compatible with kinase activity. Allosteric inhibitors can potentially be exploited to elucidate kinase functions not discovered using ATP-competitive inhibitors, because they can exploit binding sites and regulatory mechanisms that are unique to a particular kinase.The c-Abl and Arg (Abl-related gene) proteins comprise the Abl family of non-receptor tyrosine kinases. Each family member has two isoforms: one that is myristoylated in the N terminus (1b or IV) and the other that is deficient in N-myristoylation due to an alternative splicing of the first exon (1a or I) (Fig. 1A). N-Myristoylation often serves as a mechanism for targeting proteins to cellular membranes. However, Abl family members localize to multiple subcellular compartments; whereas Arg is mostly found in the cytoplasm, c-Abl shuttles between the nucleus and the cytoplasm, where it localizes to the cytosol, endoplasmic reticulum, and mitochondria (2).Open in a separate windowFIGURE 1.A, domain structure of Abl family members (5). The numbers indicate amino acid residues in c-Abl 1b, and the recombinant protein constructs used in this study encompass amino acids 65–534, 83–534, and 248–531. B, ribbon representation of the c-Abl kinase NH2-terminal half residues, including the SH3, SH2, and kinase domains (Protein Data Bank code 1OPK) (7). The NH2-terminal cap (amino acids 2–79) is indicated by dotted lines (8). The myristate-binding site and ATP binding pocket are indicated by arrows. C, ribbon representation of an enlarged view of GNF-2 (colored gold) bound to the c-Abl myristate binding site. The location of Ala356 is indicated.The Abl family members share a high degree of sequence identity (∼90%) in the NH2-terminal half residues, including the SH3,2 SH2, and kinase domains (3). The kinase domain is followed by proline-rich motifs that serve as binding sites for SH3 domains. A range of proteins are reported to bind directly or indirectly to the SH3, SH2, and proline-rich domains of c-Abl and are implicated in the proper regulation of the kinase activities of Abl family members in the cytoplasm (46). In addition, as revealed by recent crystallographic analyses of inactive and assembled form of recombinant Abl, the kinase activity of c-Abl is modulated by the intrinsic binding of the N-myristoyl residue to a hydrophobic pocket in the C-lobe of the kinase domain, which induces conformational changes in the kinase domain and subsequently allows the SH3 and SH2 domains to pack against the kinase domain (7, 8). Altogether, these observations suggest that the kinase activities of Abl family members in normal cells are tightly regulated by both intra- and intermolecular interactions (2, 9). Disruption of these strong regulatory mechanisms results in deregulated kinase activity, as illustrated by the BCR-Abl and v-Abl oncoproteins.Recent years have seen great advances in pharmacological inhibition of deregulated c-Abl kinase activity. Among the small molecule inhibitors targeting BCR-Abl kinase are imatinib (STI-571; Gleevec), nilotinib (AMN 107), and dasatinib (BMS-354825) (10). These small molecules have been used not only for clinical intervention in patients with leukemia but also as chemical tools to further dissect BCR-Abl kinase-linked signaling pathways in tissue culture cells (11). However, efforts to analyze the effects of monospecific inhibition of BCR-Abl kinase have been complicated by cross-reactivity of ATP-competitive Abl inhibitors with other kinases. For example, in addition to inhibiting c-Abl and BCR-Abl, STI-571 and nilotinib also potently inhibit c-Kit, platelet-derived growth factor receptor, and DDR1, whereas dasatinib potently inhibits all of these kinases as well as the Src family, Tec family, and KDR kinases (12). The multitargeted nature of these ATP-competitive inhibitors makes it difficult to assign a particular biological effect to inhibition of a specific kinase target.We previously reported the discovery of the first non-ATP site-monoselective BCR-Abl inhibitor (GNF-2), which targets not only wild type BCR-Abl but also many clinically relevant STI-571-resistant mutants either alone or in combination with other BCR-Abl inhibitors (13). Molecular modeling, site-directed mutagenesis, competition assays, NMR spectroscopy, and protein crystallography were used to determine that GNF-2 binds to a myristate-binding site in the C-lobe of the c-Abl kinase domain (Fig. 1, B and C) (3). The discovery of GNF-2 was the first demonstration that c-Abl kinase activity could be pharmacologically modulated by an inhibitor that binds outside the ATP or substrate binding sites. Although it remained unclear how GNF-2 is capable of inhibiting c-Abl upon binding to the myristate-binding site, we speculated that GNF-2 probably mimics the function of the N-myristoyl residue in c-Abl. Here, we investigated the effects of GNF-2 on Abl family members with the goals of providing further insights into the mechanism of GNF-2 function and laying the foundation to utilize GNF-2 as a tool to investigate c-Abl- and Arg-linked cellular processes.  相似文献   

4.
Inhibitors that bind competitively to the ATP binding pocket in the kinase domain of the oncogenic fusion protein BCR–Abl1 are used successfully in targeted therapy of chronic myeloid leukemia (CML). Such inhibitors provided the first proof of concept that kinase inhibition can succeed in a clinical setting. However, emergence of drug resistance and dose-dependent toxicities limit the effectiveness of these drugs. Therefore, treatment with a combination of drugs without overlapping resistance mechanisms appears to be an appropriate strategy. In the present work, we explore the effectiveness of combination therapies of the recently developed allosteric inhibitor asciminib with the ATP-competitive inhibitors nilotinib and dasatinib in inhibiting the BCR–Abl1 kinase activity in CML cell lines. Through these experiments, we demonstrate that asciminib significantly enhances the inhibition activity of nilotinib, but not of dasatinib. Exploring molecular mechanisms for such allosteric enhancement via systematic computational investigation incorporating molecular dynamics, metadynamics simulations, and density functional theory calculations, we found two distinct contributions. First, binding of asciminib triggers conformational changes in the inactive state of the protein, thereby making the activation process less favorable by ∼4 kcal/mol. Second, the binding of asciminib decreases the binding free energies of nilotinib by ∼3 and ∼7 kcal/mol for the wildtype and T315I-mutated protein, respectively, suggesting the possibility of reducing nilotinib dosage and lowering risk of developing resistance in the treatment of CML.  相似文献   

5.
The tyrosine kinase Src and its close homolog Abl, both play important roles in chronic myelogenous leukemia (CML) progression and Imatinib resistance. No clinically approved inhibitors of the drug-resistant AblT315I exist to date. Here, we present a thorough kinetic analysis of two potent dual Src-Abl inhibitors towards wild type Src and Abl, and the AblT315I mutant. Our results show that the most potent compound BO1 shows only a modest loss of potency (fourfold) towards the AblT315I mutant in vitro and was an ATP-competitive inhibitor of wild type Abl but it acted as a non-competitive inhibitor in the case of AblT315I.  相似文献   

6.
We describe the design, synthesis and structure-activity relationship studies in optimizing a series of benzotriazine compounds as potent inhibitors of both Abl and Abl-T315I enzymes. The design includes targeting of an acid functional residue on the alphaC-helix that is available only upon kinase activation. This designed interaction provides an advantage in overcoming the challenges arising from the T315I mutation of Abl and transforms poor (ca. 10 microM) inhibitors into those with low nM potency.  相似文献   

7.
Conformational change is a common molecular mechanism for the regulation of kinase activities. Small molecule modulators of protein conformations, including allosteric kinase inhibitors, are highly wanted as tools for the interrogation of kinase biology and as selective therapeutic agents. However, straightforward cellular assays monitoring kinase conformations in a manner conducive to high-throughput screening (HTS) are not readily available. Here we describe such an HTS-compatible conformational sensor assay for Abl based on a split luciferase construct. The Abl sensor responds to intramolecular structural rearrangements associated with intracellular Abl deactivation and small molecule inhibition. The intact regulatory CAP-SH3-SH2 domain is required for the full functionality of the sensor. Moreover, a T334I Abl mutant (T315I in Abl1a) was found to be particularly well suited for HTS purposes and mechanistic intracellular studies of T334I mutant inhibitors. We expect that the split luciferase-based conformational sensor approach might be more broadly useful to probe the intracellular activation of other kinases and enzymes in general.  相似文献   

8.
Cyclin‐dependent kinases constitute attractive pharmacological targets for cancer therapeutics, yet inhibitors in clinical trials target the ATP‐binding pocket of the CDK and therefore suffer from limited selectivity and emergence of resistance. The more recent development of allosteric inhibitors targeting conformational plasticity of protein kinases offers promising perspectives for therapeutics. In particular tampering with T‐loop dynamics of CDK2 kinase would provide a selective means of inhibiting this kinase, by preventing its conformational activation. To this aim we engineered a fluorescent biosensor that specifically reports on conformational changes of CDK2 activation loop and is insensitive to ATP or ATP‐competitive inhibitors, which constitutes a highly sensitive probe for identification of selective T‐loop modulators. This biosensor was successfully applied to screen a library of small chemical compounds leading to discovery of a family of quinacridine analogs, which potently inhibit cancer cell proliferation, and promote accumulation of cells in S phase and G2. These compounds bind CDK2/ Cyclin A, inhibit its kinase activity, compete with substrate binding, but not with ATP, and dock onto the T‐loop of CDK2. The best compound also binds CDK4 and CDK4/Cyclin D1, but not CDK1. The strategy we describe opens new doors for the discovery of a new class of allosteric CDK inhibitors for cancer therapeutics.  相似文献   

9.
Kinase domain (KD) mutations of Bcr-Abl interfering with imatinib binding are the major mechanism of acquired imatinib resistance in patients with Philadelphia chromosome-positive leukemia. Mutations of the ATP binding loop (p-loop) have been associated with a poor prognosis. We compared the transformation potency of five common KD mutants in various biological assays. Relative to unmutated (native) Bcr-Abl, the ATP binding loop mutants Y253F and E255K exhibited increased transformation potency, M351T and H396P were less potent, and the performance of T315I was assay dependent. The transformation potency of Y253F and M351T correlated with intrinsic Bcr-Abl kinase activity, whereas the kinase activity of E255K, H396P, and T315I did not correlate with transforming capabilities, suggesting that additional factors influence transformation potency. Analysis of the phosphotyrosine proteome by mass spectroscopy showed differential phosphorylation among the mutants, a finding consistent with altered substrate specificity and pathway activation. Mutations in the KD of Bcr-Abl influence kinase activity and signaling in a complex fashion, leading to gain- or loss-of-function variants. The drug resistance and transformation potency of mutants may determine the outcome of patients on therapy with Abl kinase inhibitors.  相似文献   

10.
BCR-ABL kinase domain inhibition can be used to treat chronic myeloid leukemia. The inhibitors such as imatinib, dasatinib and nilotinib are effective drugs but are resistant to some BCR-ABL mutations. The pan-BCR-ABL kinase inhibitor ponatinib exhibits potent activity against native, T315I, and all other clinically relevant mutants, and showed better inhibition than the previously known inhibitors. We have studied the molecular dynamics simulations and calculated solvated interaction energies of native and fourteen mutant BCR-ABL kinases (M244V, G250E, Q252H, Y253F, Y253H, E255K, E255V, T315A, T315I, F317L, F317V, M351T, F359V and H396P) complexed with ponatinib. These studies revealed that the interactions between ponatinib and individual residues in BCR-ABL kinase are also affected due to the remote residue mutations. We report that some residues, Met244, Lys245, Gln252, Gly254, Leu370 and Leu298 do not undergo any conformational changes, while the fluctuations in residues from P-loop, β3-, β5- strands and αC- helix are mainly responsible for ponatinib binding to native and all mutant BCR-ABL kinases. Our work provides the molecular mechanisms of native and mutant BCR-ABL kinases inhibition by ponatinib at atomic level that has not been studied before.  相似文献   

11.
BackgroundAbl1 is a protein tyrosine kinase whose aberrant activation due to mutations is the culprit of several cancers, most notably chronic myeloid leukaemia. Several Abl1 inhibitors are used as anti-cancer drugs. Unfortunately, drug resistance limits their effectiveness. The main cause for drug resistance is mutations in the kinase domain (KD) of Abl1 that evolve in patients. The T315I mutation confers resistance against all clinically-available inhibitors except ponatinib. Resistance to ponatinib can develop by compound (double) mutations.MethodsKinetic measurements of the KD of Abl1 and its mutants were carried out to examine their catalytic activity. Specifically, mutants that lead to drug resistance against ponatinib were considered. Molecular dynamics simulations and multiple sequence analysis were used for explanation of the experimental findings.ResultsThe catalytic efficiency of the T315I pan-resistance mutant is more than two times lower than that of the native KD. All ponatinib resistant mutations restore the catalytic efficiency of the enzyme. Two of them (G250E/T315I and Y253H/E255V) have a catalytic efficiency that is more than five times that of the native KD.ConclusionsThe measurements and analysis suggest that resistance is at least partially due to the development of a highly efficient kinase through subsequent mutations. The simulations highlight modifications in two structurally important regions of Abl1, the activation and phosphate binding loops, upon mutations.General significanceExperimental and computational methods were used together to explain how mutations in the kinase domain of Abl1 lead to resistance against the most advanced drug currently in use to treat chronic myeloid leukaemia.  相似文献   

12.
The majority of kinase inhibitors that have been developed so far--known as type I inhibitors--target the ATP binding site of the kinase in its active conformation, in which the activation loop is phosphorylated. Recently, crystal structures of inhibitors such as imatinib (STI571), BIRB796 and sorafenib (BAY43-9006)--known as type II inhibitors--have revealed a new binding mode that exploits an additional binding site immediately adjacent to the region occupied by ATP. This pocket is made accessible by an activation-loop rearrangement that is characteristic of kinases in an inactive conformation. Here, we present a structural analysis of binding modes of known human type II inhibitors and demonstrate that they conform to a pharmacophore model that is currently being used to design a new generation of kinase inhibitors.  相似文献   

13.
Therapies that target BCR-ABL in chronic myeloid leukemia, including imatinib, dasatinib and nilotinib, have dramatically improved patient outcome. BCR-ABL mutations, however, contribute to treatment resistance by disrupting drug contact sites or causing conformational changes thus making contact sites inaccessible. Clinical data indicate that developing BCR-ABL mutations during imatinib treatment is predictive for shorter progression-free survival, and that outcomes may depend on mutation type or location. In vitro, dasatinib and nilotinib inhibit most imatinib-resistant BCR-ABL mutations, except for T315I. In clinical studies, other mutations associated with treatment resistance include V299L, T315A, and F317I/L for dasatinib and Y253F/H, E255K/V, and F359C/V for nilotinib. Evaluating patients with clinical signs of resistance for BCR-ABL mutations is an important component of disease monitoring, potentially facilitating selection of subsequent therapy. First-line treatment with dasatinib or nilotinib instead of imatinib may reduce emergence of resistance but novel agents are needed to overcome the problematic T315I mutation.  相似文献   

14.
RIPK2 mediates inflammatory signaling by the bacteria‐sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD‐mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP‐binding and XIAP‐mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between β2 and β3 of the N‐lobe of the kinase, which is in close proximity to the ATP‐binding pocket. Through characterization of a new series of ATP pocket‐binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2‐XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP‐binding pocket in RIPK2 can be exploited to interfere with the RIPK2‐XIAP interaction for modulation of NOD signaling.  相似文献   

15.
Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.  相似文献   

16.
Imatinib is an ATP-competitive inhibitor of Bcr-Abl kinase and the first drug approved for chronic myelogenous leukemia (CML) treatment. Here we show that imatinib binds to a secondary, allosteric site located in the myristoyl pocket of Abl to function as an activator of the kinase activity. Abl transitions between an assembled, inhibited state and an extended, activated state. The equilibrium is regulated by the conformation of the αΙ helix, which is located nearby the allosteric pocket. Imatinib binding to the allosteric pocket elicits an αΙ helix conformation that is not compatible with the assembled state, thereby promoting the extended state and stimulating the kinase activity. Although in wild-type Abl the catalytic pocket has a much higher affinity for imatinib than the allosteric pocket does, the two binding affinities are comparable in Abl variants carrying imatinib-resistant mutations in the catalytic site. A previously isolated imatinib-resistant mutation in patients appears to be mediating its function by increasing the affinity of imatinib for the allosteric pocket, providing a hitherto unknown mechanism of drug resistance. Our results highlight the benefit of combining imatinib with allosteric inhibitors to maximize their inhibitory effect on Bcr-Abl.  相似文献   

17.
Bcr‐Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr‐Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr‐Abl activity, which led to the recent development of ABL‐001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL‐001 induced a ‘bent’ conformation in the C‐terminal helix of Bcr‐Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr‐Abl by dual targeting. Our findings revealed that unlike in the Bcr‐Abl‐Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C‐terminal helix that varied with time. This was coupled with significant alteration in Bcr‐Abl stability, flexibility, and compactness and an overall structural re‐orientation inwards towards the hydrophobic core, which reduced the solvent‐exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer.  相似文献   

18.
MLN4924 is an adenosine sulfamate analog that generates the inhibitory NEDD8-MLN4924 covalent complex. A single nucleotide transition that changes alanine 171 to threonine (A171T) of the NAE subunit UBA3 reduces the enzyme’s sensitivity for MLN4924. Our molecular dynamics simulation study revealed that A171T transition brought remarkable conformational changes in enzyme structure (open ATP binding pocket), which reduced the interaction between MLN4924 and ATP binding pocket while wild form completely covered the MLN4924. A total difference of ?49.75?kJ/mol was noticed in interaction energy (electrostatic and van der Waals) during simulation between mutant and wild form with MLN4924. Superimposition of final 20?ns mutant structure with reference structure showed significant change in native binding position as compared to wild form. Results were found in coherence with the recently reported in vitro studies which states that A171T transition leads to change in ATP binding pocket structure.  相似文献   

19.
The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.  相似文献   

20.
Abstract

Acute lymphocytic leukemia (ALL) is one of the most dangerous types of leukemia, and about 40% of them is Philadelphia chromosome-positive acute lymphocytic leukemia (Ph?+?ALL). Ph?+?ALL is caused by the fusion of the breakpoint cluster region (BCR) and the Ableson (ABL) genes, named the BCR-ABL fused gene that codes for an autonomously active tyrosine kinase. Tyrosine kinase inhibitors (TKIs) are among the first-line therapeutic agents for the treatment of Ph?+?ALL. Drug resistance are the major obstacle, limiting their clinical utility. The latest third-generation TKIs, ponatinib, can tackle most abnormal BCR-ABL kinases, including the T315I mutant that is resistant to first- and second-generations TKIs such as imatinib. However, drug resistance still emerges with the novel T315L mutation and the underlying mechanisms remain elusive. Here, using molecular dynamics (MD) simulations, we explored into the detailed interactions between ponatinib and BCR-ABL in the wild-type (WT), T315I, and T315L systems. The simulations revealed the significant conformational changes of ponatinib in its binding site due to the T315L mutation and the underlying structural mechanisms. Binding free energy analysis unveiled that the affinity of ponatinib to BCR-ABL decreased upon T315L mutation, which resulted in its unfavorable binding and drug resistance. Key residues responsible for the unfavored unbinding were also identified. This study elucidates the detailed mechanisms for the resistance of ponatinib in Ph?+?ALL triggered by the T315L mutation and will provide insights for future drug development and optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号