首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Technological developments based on the use of autologous white adipose tissue (WAT) attracted attention to minor fat depots as possible sources of adipose tissue. In plastic surgery, the trochanteric fatty pad is one of the most used WAT depots for its location and organoleptic characteristics that make it particularly suitable for reconstructive procedures. Despite its wide use in clinic, the structure of this depot has never been studied in detail and it is not known if structural differences exist among trochanteric fat and other subcutaneous WAT depots. The present study was performed on trochanteric fat pad with the aim to clarify the morphology of its adipocytes, stroma and microcirculation, with particular reference to the stem niches. Histological and ultrastructural studies showed that the main peculiar feature of the trochanteric fat concerns its stromal component, which appears less dense than in the other subcutaneous WATs studied. The intra-parenchymal collagen stroma is poor and the extracellular compartment shows large spaces, filled with electron-light material, in which isolated collagen bundles are present. The adipocytes are wrapped in weak and easily detachable collagen baskets. These connective sheaths are very thin compared to the sheaths in other subcutaneous WAT depots. The capillaries are covered by large, long and thin elements surrounded by an external lamina; these perivascular cells are poor in organelles and mainly contain poly-ribosomes. In conclusion, when compared to other WAT deposits, the trochanteric fatty pad shows structural peculiarities in its stroma and microcirculation suggesting a high regenerative potential. Resistance, dissociability, microvascular weft and high regenerative potential make the trochanteric fatty pad a privileged source for harvesting in autologous WAT-based regenerative procedures.  相似文献   

2.
3.
Insulin sensitivity deteriorates with age, but mechanisms remain unclear. Age‐related changes in the function of subcutaneous white adipose tissue (sWAT) are less characterized than those in visceral WAT. We hypothesized that metabolic alterations in sWAT, which in contrast to epididymal WAT, harbors a subpopulation of energy‐dissipating UCP1+ brown adipocytes, promote age‐dependent progression toward insulin resistance. Indeed, we show that a predominant consequence of aging in murine sWAT is loss of ‘browning’. sWAT from young mice is histologically similar to brown adipose tissue (multilocular, UCP1+), but becomes morphologically white by 12 months of age. Correspondingly, sWAT expression of ucp1 precipitously declines (~300‐fold) between 3 and 12 months. Loss continues into old age (24 months) and is inversely correlated with the development of insulin resistance. Additional age‐dependent changes in sWAT include lower expression of adbr3 and higher expression of maoa, suggesting reduced local adrenergic tone as a potential mechanism. Indeed, treatment with a β3‐adrenergic agonist to compensate for reduced tone rescues the aged sWAT phenotype. Age‐related changes in sWAT are not explained by the differences in body weight; mice subjected to 40% caloric restriction for 12 months are of body weight similar to 3‐month‐old ad lib fed mice, but display sWAT resembling that of age‐matched ad lib fed mice (devoid of brown adipose‐like morphology). Overall, findings identify the loss of ‘browning’ in sWAT as a new aging phenomenon and provide insight into the pathogenesis of age‐associated metabolic disease by revealing novel molecular changes tied to systemic metabolic dysfunction.  相似文献   

4.
A method of employing high-resolution mass spectrometry in combination with in vivo metabolite deuterium labeling was developed in this study to investigate the effects of alcohol exposure on lipid homeostasis at the white adipose tissue (WAT)-liver axis in a mouse model of alcoholic fatty liver. In order to differentiate the liver lipids synthesized from the fatty acids that were transported back from adipose tissue and the lipids synthesized from other sources of fatty acids, a two-stage mouse feeding experiment was performed to incorporate deuterium into metabolites. Hepatic lipids extracted from mouse liver, epididymal white adipose tissue (eWAT) and subcutaneous white adipose tissue (sWAT) were analyzed. It was found that 13 and 10 triacylglycerols (TGs) incorporated with a certain number of deuterium were significantly increased in alcohol induced fatty liver at two and four weeks of alcohol feeding periods, respectively. The concentration changes of these TGs ranged from 1.7 to 6.3-fold increase. A total of 14 deuterated TGs were significantly decreased in both eWAT and sWAT at the two and four weeks and the fold-change ranged from 0.19 to 0.77. The increase of deuterium incorporated TGs in alcohol-induced fatty liver and their decrease in both eWAT and sWAT indicate that alcohol exposure induces hepatic influx of fatty acids which are released from WATs. The results of time course analysis further indicate a mechanistic link between adipose fat loss and hepatic fat gain in alcoholic fatty liver.  相似文献   

5.

Background

Inducing beige fat from white adipose tissue (WAT) is considered to be a shortcut to weight loss and increasingly becoming a key area in research into treatments for obesity and related diseases. However, currently, animal models of beige fat are restricted to rodents, where subcutaneous adipose tissue (sWAT, benign WAT) is more liable to develop into the beige fat under specific activators than the intra-abdominal adipose tissue (aWAT, malignant WAT) that is the major source of obesity related diseases in humans.

Methods

Here we induced beige fat by cold exposure in two species of bats, the great roundleaf bat (Hipposideros armiger) and the rickett''s big-footed bat (Myotis ricketti), and compared the molecular and morphological changes with those seen in the mouse. Expression of thermogenic genes (Ucp1 and Pgc1a) was measured by RT-qPCR and adipocyte morphology examined by HE staining at three adipose locations, sWAT, aWAT and iBAT (interscapular brown adipose tissue).

Results

Expression of Ucp1 and Pgc1a was significantly upregulated, by 729 and 23 fold, respectively, in aWAT of the great roundleaf bat after exposure to 10°C for 7 days. Adipocyte diameters of WATs became significantly reduced and the white adipocytes became brown-like in morphology. In mice, similar changes were found in the sWAT, but much lower amounts of changes in aWAT were seen. Interestingly, the rickett''s big-footed bat did not show such a tendency in beige fat.

Conclusions

The great roundleaf bat is potentially a good animal model for human aWAT browning research. Combined with rodent models, this model should be helpful for finding therapies for reducing harmful aWAT in humans.  相似文献   

6.
Previous studies on laboratory rodents, rabbits, and humans have demonstrated that adipose tissue fatty acid (FA) mobilization is selective, and its efficiency is related to the molecular structure of FAs. This study was undertaken to find out whether such preferences of FA mobilization are a general feature of mammalian white adipose tissue (WAT) and are also manifested in carnivores. Fractional mobilization of a wide spectrum of FAs was studied by gas-liquid chromatography from six subcutaneous (scapular, rump, ventral) and intra-abdominal (omental, mesenteric, retroperitoneal) WAT depots of raccoon dogs (Nyctereutes procyonoides) fed or fasted for 2 months. Fasting stimulated the mobilization of shorter-chain saturated, mono-unsaturated (MUFAs), and polyunsaturated FAs (PUFAs). The effects of unsaturation and the position of the first double bond from the methyl end were more inconsistent. The effect of double-bond position may be due to chain shortening of longer-chain MUFAs and preferential utilization of n-3 PUFAs over n-6 PUFAs. Moreover, there were site-specific differences in fractional mobilization, the omental adipose tissue being the most divergent. The in vivo FA mobilization from the regional WAT depots of a carnivore was selective, and the molecular structure of the FA affected its efficiency.  相似文献   

7.
Brown adipose tissues (BAT) are derived from a myogenic factor 5 (Myf5)-expressing cell lineage and white adipose tissues (WAT) predominantly arise from non-Myf5 lineages, although a subpopulation of adipocytes in some WAT depots can be derived from the Myf5 lineage. However, the functional implication of the Myf5- and non-Myf5-lineage cells in WAT is unclear. We found that the Myf5-lineage constitution in subcutaneous WAT depots is negatively correlated to the expression of classical BAT and newly defined beige/brite adipocyte-specific genes. Consistently, fluorescent-activated cell sorting (FACS)-purified Myf5-lineage adipo-progenitors give rise to adipocytes expressing lower levels of BAT-specific Ucp1, Prdm16, Cidea, and Ppargc1a genes and beige adipocyte-specific CD137, Tmem26, and Tbx1 genes compared with the non-Myf5-lineage adipocytes from the same depots. Ablation of the Myf5-lineage progenitors in WAT stromal vascular cell (SVC) cultures leads to increased expression of BAT and beige cell signature genes. Strikingly, the Myf5-lineage cells in WAT are heterogeneous and contain distinct adipogenic [stem cell antigen 1(Sca1)-positive] and myogenic (Sca1-negative) progenitors. The latter differentiate robustly into myofibers in vitro and in vivo, and they restore dystrophin expression after transplantation into mdx mouse, a model for Duchenne muscular dystrophy. These results demonstrate the heterogeneity and functional differences of the Myf5- and non-Myf5-lineage cells in the white adipose tissue.  相似文献   

8.
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases(such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue(WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations(subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adiposederived stem/stromal cells(ASC; referred to as adipose progenitor cells, in vivo)with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morphofunctional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.  相似文献   

9.
Energy is stored predominately as lipid in white adipose tissue (WAT) in distinct anatomical locations, with each site exerting different effects on key biological processes, including glucose homeostasis. To determine the relative contributions of subcutaneous and visceral WAT on glucose homeostasis, comparable amounts of adipose tissue from abdominal subcutaneous inguinal WAT (IWAT), intra-abdominal retroperitoneal WAT (RWAT), male gonadal epididymal WAT (EWAT), or female gonadal parametrial WAT (PWAT) were removed. Gonadal fat removal in both male and female chow-fed lean mice resulted in lowered glucose levels across glucose tolerance tests. Female lean C57BL/6J mice as well as male and female lean FVBN mice significantly improved glucose tolerance, indicated by decreased areas under glucose clearance curves. For the C57BL/6J mice maintained on a high-fat butter-based diet, glucose homeostasis was improved only in female mice with PWAT removal. Removal of IWAT or RWAT did not affect glucose tolerance in either dietary condition. We conclude that WAT contribution to glucose homeostasis is depot specific, with male gonadal EWAT contributing to glucose homeostasis in the lean state, whereas female gonadal PWAT contributes to glucose homeostasis in both lean and obese mice. These data illustrate both critical differences among various WAT depots and how they influence glucose homeostasis and highlight important differences between males and females in glucose regulation.  相似文献   

10.
Piglets are characteristically cold intolerant and thus susceptible to high mortality. However, browning of white adipose tissue (WAT) can induce non-shivering thermogenesis as a potential strategy to facilitate the animal’s response to cold. Whether cold exposure can induce browning of subcutaneous WAT (sWAT) in piglets in a similar manner as it can in humans remains largely unknown. In this study, piglets were exposed to acute cold (4°C, 10 h) or chronic cold exposure (8°C, 15 days), and the genes and proteins of uncoupling protein 1 (UCP1)-dependent and independent thermogenesis, mitochondrial biogenesis, lipogenic and lipolytic processes were analysed. Interestingly, acute cold exposure induced browning of porcine sWAT, smaller adipocytes and the upregulated expression of UCP1, PGC1α, PGC1β, C/EBPβ, Cidea, UCP3, CKMT1 and PM20D1. Conversely, chronic cold exposure impaired the browning process, reduced mitochondrial numbers and the expression of browning markers, including UCP1, PGC1α and PRDM16. The present study demonstrated that acute cold exposure (but not chronic cold exposure) induces porcine sWAT browning. Thus, browning of porcine sWAT could be a novel strategy to balance the body temperature of piglets, and thus could be protective against cold exposure.  相似文献   

11.
IL-6 and TNF-alpha are synthesized in white adipose tissue both by adipocytes and by the stroma-vascular fraction. They both are known to interfere with insulin signaling, reducing insulin sensitivity and lipid deposition. At a central level, IL-6 enhances sympathetic nervous system activity, thus enhancing lipolysis and reducing fat mass. During late pregnancy, white adipose tissue (WAT) mass increases and insulin sensitivity decreases. To assess the involvement of both adipokines in such processes, we analyzed the tissue content and release of both adipokines in parametrial and subcutaneous WAT depots and their circulating and cerebrospinal fluid concentrations in nonpregnant rats and in pregnant rats by days 8, 15, and 19 of pregnancy. The tissue content of both adipokines was enhanced 5-6 times by day 8 until the end of pregnancy in parametrial WAT, whereas the increase took place by day 15-19 in subcutaneous WAT. No increase in tissue release was detected, suggesting a local action. However, circulating IL-6 concentration was enhanced by day 8 until the end of pregnancy, suggesting sources other than WAT. IL-6 concentration in cerebrospinal fluid paralleled the increases in serum by days 8 and 15, suggesting a systemic origin. However, it returned to basal levels by day 19, suggesting a central control for IL-6 entrance. TNF-alpha was not detected in either serum or cerebrospinal fluid. These results led us to conclude that across pregnancy adipokines control WAT depots in a time- and depot-dependent manner. They do so directly, by local production, but the enhanced concentrations of both circulating and CSF IL-6 suggest an indirect action mediated by the nervous system.  相似文献   

12.
Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT) after applying a radio-frequency (RF) current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes) and outside (extra-cellular matrix) the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells’ surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT.  相似文献   

13.
Although not simultaneously, resistin expression in white adipose tissue (WAT) and resistin plasma concentration have been shown to increase in pregnant rats. To clarify the involvement of sex hormones in such increases, we administered for 3-5 days progesterone, estradiol, or human chorionic gonadotropin (hCG) to female rats in dioestrus II. Progesterone increased resistin expression retroperitoneal WAT but lacked effect in parametrial or subcutaneous depots. It also increased resistin plasma concentration. Estradiol decreased resistin expression in both parametrial and inguinal WAT but was without effect on retroperitoneal depots. It did not alter plasma resistin. Human hCG increased resistin expression in all the visceral depots examined - parametrial, inguinal and retroperitoneal - but did not change plasma resistin. These results show that hormonal influences in resistin expression are depot-dependent and can run separately from changes in its plasma concentration. Besides, the locally restricted effect of progesterone in resistin expression compared with that of hCG suggests it is not the only hormone enhancing resistin expression in early pregnancy. However, it could enhance resistin release in late pregnancy. Estradiol could be involved in the decrease of resistin expression in late pregnancy. Finally, since hCG acts through LH receptors, our results suggest that they are present in WAT and that they control resistin expression.  相似文献   

14.
Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.  相似文献   

15.
Triacylglycerol/fatty acid substrate cycling was measuredin vivo in brown adipose tissue (BAT) and white adipose tissue (WAT) of fed, starved and refed rats. Starvation (24 h) significantly decreased the rate of cycling in BAT, and refeeding chow diet led to a rapid, 6-fold increase in cycling. Cycling rate in WAT was much lower than in BAT, and was not influenced by fasting or refeeding. Similar rates of cycling were found in epididymal, mesenteric, subcutaneous, and scapular WAT depots. Sympathetic denervation of interscapular BAT abolished the response of the tissue to refeeding, as did acute suppression of insulin secretion. Similarly, rats fasted for 3 days showed no acute increase in the activity of the cycle following refeeding.  相似文献   

16.
Mainly from cell culture studies, a series of genes that have been suggested to be characteristic of different types of adipocytes have been identified. Here we have examined gene expression patterns in nine defined adipose depots: interscapular BAT, cervical BAT, axillary BAT, mediastinic BAT, cardiac WAT, inguinal WAT, retroperitoneal WAT, mesenteric WAT, and epididymal WAT. We found that each depot displayed a distinct gene expression fingerprint but that three major types of depots were identifiable: the brown, the brite, and the white. Although differences in gene expression pattern were generally quantitative, some gene markers showed, even in vivo, remarkable depot specificities: Zic1 for the classical BAT depots, Hoxc9 for the brite depots, Hoxc8 for the brite and white in contrast to the brown, and Tcf21 for the white depots. The effect of physiologically induced recruitment of thermogenic function (cold acclimation) on the expression pattern of the genes was quantified; in general, the depot pattern dominated over the recruitment effects. The significance of the gene expression patterns for classifying the depots and for understanding the developmental background of the depots is discussed, as are the possible regulatory functions of the genes.  相似文献   

17.
Objective: Obesity is thought to result from an interaction between genotype and environment. Excessive adiposity is associated with a number of important comorbidities; however, the risk of obesity‐related disease varies with the distribution of fat throughout the body. The aim of this study was to map quantitative trait loci (QTLs) associated with regional fat depots in mouse lines divergently selected for food intake corrected for body mass. Research Methods and Procedures: Using an F2 intercross design (n = 457), the dry mass of regional white (subcutaneous, gonadal, retroperitoneal, and mesenteric) adipose tissue (WAT) and brown adipose tissue (BAT) depots were analyzed to map QTLs. Results: The total variance explained by the mapped QTL varied between 12% and 39% for BAT and gonadal fat depots, respectively. Using the genome‐wide significance threshold, nine QTLs were associated with multiple fat depots. Chromosomes 4 and 19 were associated with WAT and BAT and chromosome 9 with WAT depots. Significant sex × QTL interactions were identified for gonadal fat on chromosomes 9, 16, and 19. The pattern of QTLs identified for the regional deposits showed the most similarity between retroperitoneal and gonadal fat, whereas BAT showed the least similarity to the WAT depots. Analysis of total fat mass explained in excess of 40% of total variance. Discussion: There was limited concordance between the QTLs mapped in our study and those reported previously. This is likely to reflect the unique nature of the mouse lines used. Results provide an insight into the genetic basis of regional fat distribution.  相似文献   

18.
White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese (ob/ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a beta(3)-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.  相似文献   

19.
The adipose organ   总被引:1,自引:0,他引:1  
In mammals, the adipose tissues are contained in a multi-depot organ: the adipose organ. It consists of several subcutaneous and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. The organ is rich of vessels and parenchymal nerve fibers, but their density is higher in the brown areas. White areas contain a variable amount of brown adipocytes and their number varies with age, strain and environmental conditions. All adipocytes of the adipose organ express a specific adrenoceptor: ss3AR. Recent data have stressed the plasticity of the adipose organ in adult animals, and in parallel with the cytological variations there are also vascular as well as neural variations. Of note, treatment of genetically and diet induced obese rats with ss3 adrenoceptor agonists ameliorate their pathological condition and this is accompanied by the appearance of brown adipocytes in white areas of the adipose organ. This drug-induced modification of the anatomy of the organ is also obtained by the treatment with PPARgamma agonists in rats and dogs. We have previously shown that the transformation of white adipose tissue into brown adipose tissue in rats treated with ss3 adrenoceptor agonists is due to a direct transformation of differentiated unilocular adipocytes (transdifferentiation). We recently also showed that the absence of ss3 adrenoceptors strongly depress this type of plasticity in the adipose organ. All together these experiments strongly suggest the possibility to modulate the plasticity of the adipose organ with therapeutic implications for obesity and related disorders.  相似文献   

20.
Surgical removal of body fat (lipectomy) triggers compensatory increases in nonexcised white adipose tissue (WAT), thus restoring adiposity levels in many species, including Siberian hamsters. In Siberian hamsters, when their lipectomized WAT is transplanted to another site (autologous grafts, no net change in body fat), healthy grafts result, but the lipectomy-induced compensatory increases in nonexcised WAT masses are exaggerated, an effect that apparently occurs only when the grafts contact intact WAT. When WAT is added to nonlipectomized hamsters to increase body fat, native WAT pads do not decrease. Thus WAT addition or removal-replacement does not induce compensatory WAT responses consistent with total body fat regulation as does WAT subtraction. Therefore, we tested whether the exaggerated response to lipectomy occurring with autologous WAT transplantation is dependent on graft site placement and whether the donor graft source [inguinal or epididymal WAT (IWAT, EWAT), sibling vs. nonsibling] affected body fat responses to WAT additions in nonlipectomized hamsters. Lipectomized hamsters received subcutaneous autologous EWAT grafts placed remotely from other WAT (ventrum) or in contact with intact WAT (dorsum), whereas intact hamsters received EWAT or IWAT grafts from sibling or nonsibling donors. The exaggerated response to lipectomy only occurred when grafts were in contact with intact WAT. EWAT, but not IWAT, additions to nonlipectomized siblings or nonsiblings increased native IWAT and retroperitoneal WAT mass but not EWAT mass compared with controls. Collectively, WAT transplantation to either lipectomized or nonlipectomized hamsters increased body fat contingent on graft contact with intact or native WAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号