首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

2.
Induction of cytotoxic T-cell-mediated virus-clearing responses by influenza virus T cell determinant-containing peptide immunogens was examined. The most potent synthetic immunogens for eliciting pulmonary viral-clearing responses contained peptides representing determinants for CD4 and CD8 T cells (TH and CTL peptides, respectively) together with two or four palmitic acid (Pal) groups. Inoculated in adjuvant, these Pal2- or Pal4-CTL-TH lipopeptides and the nonlipidated CTL peptide induced equivalent levels of cytolytic activity in the primary effector phase of the response. The ability to recall lytic responses, however, diminished much more rapidly in CTL peptide-primed than in lipopeptide-primed mice. By 15 months postpriming, the recalled lytic activity in lipopeptide-inoculated mice remained potent, but the response induced by the CTL peptide was weak. Enumeration of specific gamma interferon-secreting CD8 T cells revealed that a greater number of these T cells had entered or remained in the memory pool in lipopeptide-primed mice, arguing for a quantitative rather than qualitative enhancement of the response on recall. Addition of either the lipid or the TH peptide to the CTL peptide was not sufficient to provide these long-lived antiviral responses, but inclusion of both components augmented the response. CD4 T cells elicited by the lipopeptides did not influence the rate of viral clearance upon challenge and most likely had a role in induction or maintenance of the memory response. It therefore appears that the lipopeptide immunogens, although not significantly superior at inducing primary effector CD8 T cells, elicit a much more effective memory population, the recall of which may account for their superiority in inducing pulmonary protection after viral challenge.  相似文献   

3.
DNA vaccines can activate immunity against tumor Ags expressed as MHC class I-associated peptides. However, priming of CD8(+) CTL against weak tumor Ags may require adjuvant molecules. We have used a pathogen-derived sequence from tetanus toxin (fragment C (FrC)) fused to tumor Ag sequences to promote Ab and CD4(+) T cell responses. For induction of CD8(+) T cell responses, the FrC sequence has been engineered to remove potentially competitive MHC class I-binding epitopes and to improve presentation of tumor epitopes. The colon carcinoma CT26 expresses an endogenous retroviral gene product, gp70, containing a known H2-L(d)-restricted epitope (AH1). A DNA vaccine encoding gp70 alone was a poor inducer of CTL, and performance was not significantly improved by fusion of full-length FrC. However, use of a minimized domain of FrC, with the AH1 sequence fused to the 3' position, led to rapid induction of high levels of CTL. IFN-gamma-producing epitope-specific CTL were detectable ex vivo and these killed CT26 targets in vitro. The single epitope vaccine was more effective than GM-CSF-transfected CT26 tumor cells in inducing an AH1-specific CTL response and equally effective in providing protection against tumor challenge. Levels of AH1-specific CTL in vivo were increased following injection of tumor cells, and CTL expanded in vitro were able to kill CT26 cells in tumor bearers. Pre-existing immunity to tetanus toxoid had no effect on the induction of AH1-specific CTL. These data demonstrate the power of epitope-specific CTL against tumor cells and illustrate a strategy for priming immunity via a dual component DNA vaccine.  相似文献   

4.
Memory CD8+ T cells protect dendritic cells from CTL killing   总被引:1,自引:0,他引:1  
CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8(+) T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4(+) and CD8(+) T cell populations. Moreover, memory CD8(+) T cells that release the DC-activating factor TNF-alpha before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4(+) Th cells. The currently identified DC-protective function of memory CD8(+) T cells helps to explain the phenomenon of CD8(+) T cell memory, reduced dependence of recall responses on CD4(+) T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.  相似文献   

5.
An intact T cell compartment and IFN-gamma signaling are required for protective immunity against Chlamydia. In the mouse model of Chlamydia pneumoniae (Cpn) infection, this immunity is critically dependent on CD8(+) T cells. Recently we reported that Cpn-infected mice generate an MHC class I-restricted CD8(+) Tc1 response against various Cpn Ags, and that CD8(+) CTL to multiple epitopes inhibit Cpn growth in vitro. Here, we engineered a DNA minigene encoding seven H-2(b)-restricted Cpn CTL epitopes, the universal pan-DR epitope Th epitope, and an endoplasmic reticulum-translocating signal sequence. Immunization of C57BL/6 mice with this construct primed IFN-gamma-producing CD8(+) CTL against all seven CTL epitopes. CD8(+) T cell lines generated to minigene-encoded CTL epitopes secreted IFN-gamma and TNF-alpha and exhibited CTL activity upon recognition of Cpn-infected macrophages. Following intranasal challenge with Cpn, a 3.6 log reduction in mean lung bacterial numbers compared with control animals was obtained. Using a 20-fold increase in the Cpn challenging dose, minigene-vaccinated mice had a 60-fold reduction in lung bacterial loads, compared with controls. Immunization and challenge studies with beta(2)-microglobulin(-/-) mice indicated that the reduction of lung Cpn burdens was mediated by the MHC class I-dependent CD8(+) T cells to minigene-included Cpn CTL epitopes, rather than by pan-DR epitope-specific CD4(+) T cells. This constitutes the first demonstration of significant protection achieved by immunization with a CD8(+) T cell epitope-based DNA construct in a bacterial system and provides the basis for the optimal design of multicomponent anti-Cpn vaccines for humans.  相似文献   

6.
Remakus S  Rubio D  Ma X  Sette A  Sigal LJ 《Journal of virology》2012,86(18):9748-9759
The antigens recognized by individual CD8(+) T cells are small peptides bound to major histocompatibility complex (MHC) class I molecules. The CD8(+) T cell response to a virus is restricted to several peptides, and the magnitudes of the effector as well as memory phases of the response to the individual peptides are generally hierarchical. The peptide eliciting a stronger response is called immunodominant (ID), and those with smaller-magnitude responses are termed subdominant (SD). The relative importance of ID and SD determinants in protective immunity remains to be fully elucidated. We previously showed that multispecific memory CD8(+) T cells can protect susceptible mice from mousepox, an acute lethal viral disease. It remained unknown, however, whether CD8(+) T cells specific for single ID or SD peptides could be protective. Here, we demonstrate that immunization with dendritic cells pulsed with ID and some but not all SD peptides induces memory CD8(+) T cells that are fully capable of protecting susceptible mice from mousepox. Additionally, while natural killer (NK) cells are essential for the natural resistance of nonimmune C57BL/6 (B6) to mousepox, we show that memory CD8(+) T cells of single specificity also protect B6 mice depleted of NK cells. This suggests it is feasible to produce effective antiviral CD8(+) T cell vaccines using single CD8(+) T cell determinants and that NK cells are no longer essential when memory CD8(+) T cells are present.  相似文献   

7.
Infection of mice with a series of heterologous viruses causes a reduction of memory CD8(+) T cells specific to viruses from earlier infections, but the fate of the virus-specific memory CD4(+) T cell pool following multiple virus infections has been unknown. We have previously reported that the virus-specific CD4(+) Th precursor (Thp) frequency remains stable into long-term immunity following lymphocytic choriomeningitis virus (LCMV) infection. In this study, we questioned whether heterologous virus infections or injection with soluble protein CD4 Ags would impact this stable LCMV-specific CD4(+) Thp memory pool. Limiting dilution analyses for IL-2-producing cells and intracellular cytokine staining for IFN-gamma revealed that the LCMV-specific CD4(+) Thp frequency remains relatively stable following multiple heterologous virus infections or protein Ag immunizations, even under conditions that dramatically reduce the LCMV-specific CD8(+) CTL precursor frequency. These data indicate that the CD4(+) and CD8(+) memory T cell pools are regulated independently and that the loss in CD8(+) T cell memory following heterologous virus infections is not a consequence of a parallel loss in the memory CD4(+) T cell population.  相似文献   

8.
Immunostimulatory CpG oligodeoxynucleotides (ODN) have proven effective as adjuvants for protein-based vaccines, but their impact on immune responses induced by live viral vectors is not known. We found that addition of CpG ODN to modified vaccinia Ankara (MVA) markedly improved the induction of longer-lasting adaptive protective immunity in BALB/c mice against intranasal pathogenic vaccinia virus (Western Reserve; WR). Protection was mediated primarily by CD8(+) T cells in the lung, as determined by CD8-depletion studies, protection in B cell-deficient mice, and greater protection correlating with CD8(+) IFN-gamma-producing cells in the lung but not with those in the spleen. Intranasal immunization was more effective at inducing CD8(+) T cell immunity in the lung, and protection, than i.m. immunization. Addition of CpG ODN increased the CD8(+) response but not the Ab response. Depletion of CD4 T cells before vaccination with MVA significantly diminished protection against pathogenic WR virus. However, CpG ODN delivered with MVA was able to substitute for CD4 help and protected CD4-depleted mice against WR vaccinia challenge. This study demonstrates for the first time a protective adjuvant effect of CpG ODN for a live viral vector vaccine that may overcome CD4 deficiency in the induction of protective CD8(+) T cell-mediated immunity.  相似文献   

9.
CD8 T cell cross-reactivity between heterologous viruses has been shown to provide protective immunity, induce immunopathology, influence the immunodominance of epitope-specific T cell responses, and shape the overall memory population. Virus infections also induce cross-reactive allo-specific CTL responses. In this study, we quantified the allo-specific CD8 T cells elicited by infection of C57BL/6 (B6) mice with lymphocytic choriomeningitis virus (LCMV). Cross-reactive LCMV-specific CD8 T cells were directly visualized using LCMV peptide-charged MHC tetramers to costain T cells that were stimulated to produce intracellular IFN-gamma in response to allogeneic target cells. The cross-reactivity between T cells specific for LCMV and allogeneic Ags was broad-based, in that it involved multiple LCMV-derived peptides, but there were distinctive patterns of reactivity against allogeneic cells with different haplotypes. Experiments indicated that this cross-reactivity was not due to the expression of two TCR per cell, and that the patterns of allo-reactivity changed during sequential infection with heterologous viruses. The allo-specific CD8 T cells generated by LCMV infection were maintained at relatively high frequencies in the memory pool, indicating that memory allo-specific CD8 T cell populations can arise as a consequence of viral infections. Mice previously infected with LCMV and harboring allo-specific memory T cells were refractory to the induction of tolerance to allogeneic skin grafts.  相似文献   

10.
The unique ether glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264). In contrast, administration of OVA with aluminum hydroxide or entrapped in conventional ester-phospholipid liposomes failed to evoke significant CTL response. The archaeosome-mediated CD8(+) T cell response was primarily perforin dependent because CTL activity was undetectable in perforin-deficient mice. Interestingly, a long-term CTL response was generated with a low Ag dose even in CD4(+) T cell deficient mice, indicating that the archaeosomes could mediate a potent T helper cell-independent CD8(+) T cell response. Macrophages incubated in vitro with OVA archaeosomes strongly stimulated cytokine production by OVA-specific CD8(+) T cells, indicating that archaeosomes efficiently delivered entrapped protein for MHC class I presentation. This processing of Ag was Brefeldin A sensitive, suggesting that the peptides were transported through the endoplasmic reticulum and presented by the cytosolic MHC class I pathway. Finally, archaeosomes induced a potent memory CTL response to OVA even 154 days after immunization. This correlated to strong Ag-specific up-regulation of CD44 on splenic CD8(+) T cells. Thus, delivery of proteins in self-adjuvanting archaeosomes represents a novel strategy for targeting exogenous Ags to the MHC class I pathway for induction of CTL response.  相似文献   

11.
CD8(+) T cells play an essential role in immunity to Chlamydia pneumoniae (Cpn). However, the target Ags recognized by Cpn-specific CD8(+) T cells have not been identified, and the mechanisms by which this T cell subset contributes to protection remain unknown. In this work we demonstrate that Cpn infection primes a pathogen-specific CD8(+) T cell response in mice. Eighteen H-2(b) binding peptides representing sequences from 12 Cpn Ags sensitized target cells for MHC class I-restricted lysis by CD8(+) CTL generated from the spleens and lungs of infected mice. Peptide-specific IFN-gamma-secreting CD8(+) T cells were present in local and systemic compartments after primary infection, and these cells expanded after pathogen re-exposure. CD8(+) T cell lines to the 18 Cpn epitope-bearing peptides were cytotoxic, displayed a memory phenotype, and secreted IFN-gamma and TNF-alpha, but not IL-4. These CTL lines lysed Cpn-infected macrophages, and the lytic activity was inhibited by brefeldin A, indicating endogenous processing of CTL Ags. Finally, Cpn peptide-specific CD8(+) CTL suppressed chlamydial growth in vitro by direct lysis of infected cells and by secretion of IFN-gamma and other soluble factors. These studies provide information on the mechanisms by which CD8(+) CTL protect against Cpn, furnish the tools to investigate their possible role in immunopathology, and lay the foundation for future work to develop vaccines against acute and chronic Cpn infections.  相似文献   

12.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

13.
Multiple paths for activation of naive CD8+ T cells: CD4-independent help   总被引:2,自引:0,他引:2  
CD8(+) CTLs play a pivotal role in immune responses against many viruses and tumors. Two models have been proposed. The "three-cell" model focuses on the role of CD4(+) T cells, proposing that help is only provided to CTLs by CD4(+) T cells that recognize Ag on the same APC. The sequential "two-cell" model proposes that CD4(+) T cells can first interact with APCs, which in turn activate naive CTLs. Although these models provide a general framework for the role of CD4(+) T cells in mediating help for CTLs, a number of issues are unresolved. We have investigated the induction of CTL responses using dendritic cells (DCs) to immunize mice against defined peptide Ags. We find that help is required for activation of naive CTLs when DCs are used as APCs, regardless of the origin or MHC class I restriction of the peptides we studied in this system. However, CD8(+) T cells can provide self-help if they are present at a sufficiently high precursor frequency. The important variable is the total number of T cells responding, because class II-knockout DCs pulsed with two noncompeting peptides are effective in priming.  相似文献   

14.
We evaluated the effect of immunization with dendritic cells (DCs) pulsed with alpha-galactosylceramide (alphaGalCer) and listeriolysin O (LLO) 91-99 peptide, a dominant cytotoxic T lymphocyte (CTL) epitope of Listeria monocytogenes by observing the responses of specific CD8(+) T cells and in vivo CTL activity. DCs were pulsed with various combinations of alphaGalCer and LLO91-99 peptide and administered to BALB/c mice. Immunization with DCs pulsed with alphaGalCer and LLO91-99 at priming phase and with DCs pulsed with LLO91-99 alone at boosting phase induced stronger in vivo CTL activity, reduced the bacterial load in spleens of Listeria-challenged mice and augmented CD62L(+) CD8(+) central memory T cells compared with other immunization protocols. The blockade of interferon-gamma (IFN-gamma) at boosting phase reversed the induction of CD8(+) central memory T cells and reduced the bacterial load in spleens of Listeria-challenged mice immunized with DCs pulsed with alphaGalCer and LLO91-99 at both phases, suggesting that alphaGalCer at boosting phase has deleterious effects through IFN-gamma production. These results indicate that immunization with DCs pulsed with CTL epitope peptide together with alphaGalCer at priming phase, but not at boosting phase, is feasible for eliciting a specific CTL activity and protective immunity against infection of intracellular bacteria.  相似文献   

15.
CD8(+) T cells are a critical component of the adaptive immune response against infections and tumors. A current paradigm in immunology is that naive CD8(+) T cells require CD28 costimulation, whereas memory CD8(+) T cells do not. We show here, however, that during viral infections of mice, costimulation is required in vivo for the reactivation of memory CD8(+) T cells. In the absence of CD28 costimulation, secondary CD8(+) T cell responses are greatly reduced and this impairs viral clearance. The failure of CD8(+) T cells to expand in the absence of CD28 costimulation is CD4(+) T cell help independent and is accompanied by a failure to down-regulate Bcl-2 and by cell cycle arrest. This requirement for CD28 costimulation was shown in both influenza A and HSV infections. Thus, contrary to current dogma, memory CD8(+) T cells require CD28 costimulation to generate maximal secondary responses against pathogens. Importantly, this CD28 requirement was shown in the context of real infections were multiple other cytokines and costimulators may be up-regulated. Our findings have important implications for pathogens, such as HIV and measles virus, and tumors that evade the immune response by failing to provide CD28 costimulation. These findings also raise questions about the efficacy of CD8(+) T cell-based vaccines against such pathogens and tumors.  相似文献   

16.
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity.  相似文献   

17.
IL-15 is known to be critical in the homeostasis of Ag-specific memory CD8(+) T cells following acute viral infection. However, little is known about the homeostatic requirements of memory CD8(+) T cells during a latent viral infection. We have used the murine gammaherpesvirus-68 (MHV-68) model system to investigate whether IL-15 is necessary for the maintenance of memory CD8(+) T cells during a latent viral infection. IL-15 is not essential either for the initial control of MHV-68 infection or for the maintenance of MHV-68-specific memory CD8(+) T cells. Even at 140 days postinfection, the proportion of CD8(+) T cells recognizing the MHV-68 epitopes were the same as in control mice. The maintenance of these memory CD8(+) T cells was attributable to their ability to turn over in vivo, probably in response to the presence of low levels of Ag. IL-15(-/-) mice had a significantly higher turnover rate within the virus-specific memory CD8(+) T cell population, which was the result of increased levels of viral gene expression rather than an increase in viral load. These cells did not accumulate in the spleens of the IL-15(-/-) mice due to an increased sensitivity to apoptosis as a result of decreased Bcl-2 levels. Intriguingly, memory CD8(+) T cells from latently infected mice failed to undergo homeostatic proliferation in a naive secondary host. These data highlight fundamental differences between memory CD8(+) T cells engaged in active immune surveillance of latent viral infections vs memory CD8(+) T cells found after acute viral infections.  相似文献   

18.
For viruses that establish persistent infection, continuous immunosurveillance by effector-competent antiviral CD8(+) T cells is likely essential for limiting viral replication. Although it is well documented that virus-specific memory CD8(+) T cells synthesize cytokines after short term in vitro stimulation, there is limited evidence that these T cells exhibit cytotoxicity, the dominant antiviral effector function. Here, we show that antiviral CD8(+) T cells in mice acutely infected by polyoma virus, a persistent mouse pathogen, specifically eliminate viral peptide-pulsed donor spleen cells within minutes after adoptive transfer and do so via a perforin-dependent mechanism. Antiviral memory CD8(+) T cells were similarly capable of rapidly mobilizing potent Ag-specific cytotoxic activity in vivo. These findings strongly support the concept that a cytotoxic effector-memory CD8(+) T cell population operates in vivo to control this persistent viral infection.  相似文献   

19.
Immunodominance hierarchies operating in immune responses to viral Ags limit the diversity of the elicited CD8 T cell responses. We evaluated in I-A(b+)/A2-HHD-II and HLA-DR1(+)/A2-DR1 mice the HLA-A*0201-restricted, multispecific CD8 T cell responses to the human CMV tegument phosphoprotein pp65 (pp65) Ag. Vaccination of mice with pp65-encoding DNA elicited high IFN-γ(+) CD8 T cell frequencies to the pp65(495-503)/(e6) epitope and low responses to the pp65(320-328)/(e3) and pp65(522-530)/(e8) epitopes. Abrogation of the e6-specific immunity efficiently enhanced e3- and e8-specific T cell responses by a pp65(Δ501-503) DNA vaccine. The immunodominant e6-specific (but not the e3- and e8-specific) CD8 T cell response critically depends on CD4 T cell help. Injection of monospecific DNA- or peptide-based vaccines encoding the e3 or e8 (but not the e6) epitope into mice elicited CD8 T cells. Codelivering the antigenic peptides with different heterologous CD4 T cell helper epitopes enhanced e6-specific (but not e3- or e8-specific) CD8 T cell responses. Similarly, homologous CD4 T cell help, located within an overlapping (nested) pp65(487-503) domain, facilitated induction of e6-specific CD8 T cell responses by peptide-based vaccination. The position of the e6 epitope within this nested domain is not critical to induce the immunodominant, e6-specific CD8 T cell response to the pp65 Ag. Distant CD4 T cell epitope(s) can thus provide efficient help for establishing pp65-e6 immunodominance in vaccinated mice. These results have practical implications for the design of new T cell-stimulating vaccines.  相似文献   

20.
Recent observations have indicated that viral persistence and tumor spreading could occur because of effector function-defective CD8(+) T cells. Although chronic exposure to Ag, lack of CD4 help, and epitope dominance are suggested to interfere with CTL differentiation, mechanisms underlying the defective effector function remain obscure. We demonstrate in this report that lymphotoxin alpha-deficient mice develop CD8(+) T cells at normal frequencies when infected with HSV or immunized with OVA Ag but show impaired cytotoxic and cytokine-mediated effector functions resulting in enhanced susceptibility to HSV-induced encephalitis. Although these cells display near normal levels of perforin and Fas ligand, they remain largely at a naive state as judged by high expression of CD62 ligand and failure to up-regulate activation or memory markers. In particular, these CD8(+) T cells revealed inadequate expression of the IL-12 receptor, thus establishing a link between CTL differentiation and LTalpha possibly through regulation of IL-12 receptor. Viruses and tumors could evade immunity by targeting the same pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号