首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models.

Methodology/Principal Findings

In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens.

Conclusion/Significance

Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice.  相似文献   

2.
Natural killer (NK) cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs), which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL) cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.  相似文献   

3.
We have developed a method exploiting the phenomenon of trogocytosis to detect lymphocytes reacting specifically with target cells by flow cytometry. Trogocytosis is a process by which lymphocytes capture fragments of the plasma membrane from the antigen-presenting cells (APCs) expressing their cognate antigen. For this method, a label (such as a fluorescent lipid or biotin) is first incorporated in the membrane of APCs. These labeled cells are then co-cultured for a few hours with a population of cells containing the lymphocytes to be detected. After this period of stimulation, lymphocytes that have performed trogocytosis are identified by their acquisition of the label initially present on the APC membrane using flow cytometry. A major advantage of this method is its compatibility with the simultaneous detection of phenotypic and/or functional markers on the lymphocytes. Furthermore, cells can be recovered alive and active after detection of trogocytosis, and are therefore available for further characterization or even conceivably for therapeutic purposes.  相似文献   

4.
The humanized anti-CD22 antibody, epratuzumab, has demonstrated therapeutic activity in clinical trials of lymphoma, leukemia and autoimmune diseases, treating currently over 1500 cases of non-Hodgkin lymphoma, acute lymphoblastic leukemias, Waldenström’s macroglobulinemia, Sjögren’s syndrome, and systemic lupus erythematosus. Because epratuzumab reduces on average only 35% of circulating B cells in patients, and has minimal antibody-dependent cellular cytotoxicity and negligible complement-dependent cytotoxicity when evaluated in vitro, its therapeutic activity may not result completely from B-cell depletion. We reported recently that epratuzumab mediates Fc/FcR-dependent membrane transfer from B cells to effector cells via trogocytosis, resulting in a substantial reduction of multiple BCR modulators, including CD22, CD19, CD21, and CD79b, as well as key cell adhesion molecules, including CD44, CD62L, and β7 integrin, on the surface of B cells in peripheral blood mononuclear cells obtained from normal donors or SLE patients. Rituximab has clinical activity in lupus, but failed to achieve primary endpoints in a Phase III trial. This is the first study of trogocytosis mediated by bispecific antibodies targeting neighboring cell-surface proteins, CD22, CD20, and CD19, as demonstrated by flow cytometry and immunofluorescence microscopy. We show that, compared to epratuzumab, a bispecific hexavalent antibody comprising epratuzumab and veltuzumab (humanized anti-CD20 mAb) exhibits enhanced trogocytosis resulting in major reductions in B-cell surface levels of CD19, CD20, CD21, CD22, CD79b, CD44, CD62L and β7-integrin, and with considerably less immunocompromising B-cell depletion that would result with anti-CD20 mAbs such as veltuzumab or rituximab, given either alone or in combination with epratuzumab. A CD22/CD19 bispecific hexavalent antibody, which exhibited enhanced trogocytosis of some antigens and minimal B-cell depletion, may also be therapeutically useful. The bispecific antibody is a candidate for improved treatment of lupus and other autoimmune diseases, offering advantages over administration of the two parental antibodies in combination.  相似文献   

5.
We previously reported that 1 h after infusion of CD20 mAb rituximab in patients with chronic lymphocytic leukemia (CLL), >80% of CD20 was removed from circulating B cells, and we replicated this finding, based on in vitro models. This reaction occurs via an endocytic process called shaving/trogocytosis, mediated by FcγR on acceptor cells including monocytes/macrophages, which remove and internalize rituximab-CD20 immune complexes from B cells. Beers et al. reported that CD20 mAb-induced antigenic modulation occurs as a result of internalization of B cell-bound mAb-CD20 complexes by the B cells themselves, with internalization of ~40% observed after 2 h at 37°C. These findings raise fundamental questions regarding the relative importance of shaving versus internalization in promoting CD20 loss and have substantial implications for the design of mAb-based cancer therapies. Therefore, we performed direct comparisons, based on flow cytometry, to determine the relative rates and extent of shaving versus internalization. B cells, from cell lines, from patients with CLL, and from normal donors, were opsonized with CD20 mAbs rituximab or ofatumumab and incubated for varying times and then reacted with acceptor THP-1 monocytes to promote shaving. We find that shaving induces considerably greater loss of CD20 and bound mAb from opsonized B cells in much shorter time periods (75-90% in <45 min) than is observed for internalization. Both shaving/trogocytosis and internalization could contribute to CD20 loss when CLL patients receive rituximab therapy, but shaving should occur more rapidly and is most likely to be the key mechanism of CD20 loss.  相似文献   

6.
Key events of T and B cell biology are regulated through direct interaction with APC or target cells. Trogocytosis is a process whereby CD4(+) T, CD8(+) T, and B cells capture their specific membrane-bound Ag through the acquisition of plasma membrane fragments from their cellular targets. With the aim of investigating whether the ability to trigger trogocytosis was a selective property of Ag receptors, we set up an assay that allowed us to test the ability of many different cell surface molecules to trigger trogocytosis. On the basis of the analysis of a series of surface molecules on CD4(+) T, CD8(+) T, and B cells, we conclude that a set of cell type-specific surface determinants, including but not limited to Ag receptors, do trigger trogocytosis. On T cells, these determinants include components of the TCR/CD3 as well as that of coreceptors and of several costimulatory molecules. On B cells, we identified only the BCR and MHC molecules as potentials triggers of trogocytosis. Remarkably, latrunculin, which prevents actin polymerization, impaired trogocytosis by T cells, but not by B cells. This was true even when the same Abs were used to trigger trogocytosis in T or B cells. Altogether, our results indicate that although trogocytosis is performed by all hemopoietic cells tested thus far, both the receptors and the mechanisms involved can differ depending on the lineage of the cell acquiring membrane materials from other cells. This could therefore account for the different biological consequences of Ag capture via trogocytosis proposed for different types of cells.  相似文献   

7.
T and B cells capture antigens via membrane fragments of antigen presenting cells (APC) in a process termed trogocytosis. Whether (and how) a preferential transfer of some APC components occurs during trogocytosis is still largely unknown. We analyzed the transfer onto murine T and B cells of a large panel of fluorescent proteins with different intra-cellular localizations in the APC or various types of anchors in the plasma membrane (PM). Only the latter were transferred by trogocytosis, albeit with different efficiencies. Unexpectedly, proteins anchored to the PM''s cytoplasmic face, or recruited to it via interaction with phosphinositides, were more efficiently transferred than those facing the outside of the cell. For proteins spanning the PM''s whole width, transfer efficiency was found to vary quite substantially, with tetraspanins, CD4 and FcRγ found among the most efficiently transferred proteins. We exploited our findings to set immunodiagnostic assays based on the capture of preferentially transferred components onto T or B cells. The preferential transfer documented here should prove useful in deciphering the cellular structures involved in trogocytosis.  相似文献   

8.
Activated T cells can acquire membrane molecules from APCs through a process termed trogocytosis. The functional consequence of this event has been a subject of debate. Focusing on transfer of peptide-MHC class II (MHC-II) complexes from APCs to CD4(+) T cells after activation, in this study we investigated the molecule acquisition potential of naturally occurring regulatory T cells (Tregs) and CD4(+) Th cells. We show that acquisition of membrane molecules from APCs is an inherent feature of CD4(+) T cell activation. Triggering of the TCR enables CD4(+) T cells to acquire their agonist ligands as well as other irrelevant membrane molecules from the interacting APCs or bystander cells in a contact-dependent manner. Notably, trogocytosis is a continuous process during cell cycle progression, and Th cells and Tregs have comparable capacity for trogocytosis both in vitro and in vivo. The captured peptide-MHC-II molecules, residing in sequestered foci on the host cell surface, endow the host cells with Ag-presenting capability. Presentation of acquired peptide-MHC-II ligands by Th cells or Tregs has either stimulatory or regulatory effect on naive CD4(+) T cells, respectively. Furthermore, Th cells with captured peptide-MHC-II molecules become effector cells that manifest better recall responses, and Tregs with captured ligands exhibit enhanced suppression activity. These findings implicate trogocytosis in different subsets of CD4(+) T cells as an intrinsic mechanism for the fine tuning of Ag-specific CD4(+) T cell response.  相似文献   

9.
Confluent cultures of aortic endothelial cells contain two different cell-cell adhesion mechanisms distinguished by their requirement for calcium during trypsinization and adhesion. A hybridoma clone was isolated producing a monoclonal antibody Ec6C10, which inhibits Ca2(+)-dependent adhesion of endothelial cells. There was no inhibition of Ca2(+)-independent adhesion of endothelial cells and only a minor effect on Ca2(+)-dependent adhesion of smooth muscle cells. Immunoblotting analysis shows that the antibody Ec6C10 recognizes a protein in endothelial but not epithelial cells with an apparent molecular weight of 135,000 in reducing conditions and 130,000 in non-reducing conditions. Monoclonal antibody Ec6C10 reacts with an antigen at the cell surface as shown by indirect immunofluorescence of confluent endothelial cells in a junctional pattern outlining the cobblestone morphology of the monolayer. Removal of extracellular calcium increased the susceptibility of the antigen recognized by antibody Ec6C10 to proteolysis by trypsin. The role of the Ca2(+)-dependent cell adhesion molecule in organization of the dense peripheral microfilament band in confluent endothelial cells was examined by adjusting the level of extracellular calcium to modulate cell-cell contact. Addition of the monoclonal antibody Ec6C10 at the time of the calcium switch inhibited the extent of formation of the peripheral F-actin band. These results suggest an association between cell-cell contact and the peripheral F-actin band potentially through the Ca2(+)-dependent CAM.  相似文献   

10.
We demonstrate sorting of rare cancer cells from blood using a thin ribbon monolayer of cells within a credit-card sized, microfluidic laboratory-on-a-card ("lab card") structure. This enables higher cell throughput per minute thereby speeding up cell interrogation. In this approach, multiple cells are viewed and sorted, not individually, but as a whole cell row or section of the ribbon at a time. Gated selection of only the cell rows containing a tagged rare cell provides enrichment of the rare cell relative to background blood cells. We also designed the cell injector for laminar flow antibody labeling within 20s. The approach combines rapid laminar flow cell labeling with monolayer cell sorting thereby enabling rare cell target detection at sensitivity levels 1000 to 10,000 times that of existing flow cytometers. Using this method, total cell labeling and data acquisition time on card may be reduced to a few minutes compared to 30-60 min for standard flow methods.  相似文献   

11.
Oded Rechavi  Yoel Kloog 《FEBS letters》2009,583(11):1792-752
The recent recognition of new types of cell-cell communication pathways challenges classic theories of cell autonomy. Evidence of functional “proteome mixing” among interacting cells, particularly immune cells, supports the notion that no cell is an island, and that even these “unsplittable” units are actually non-autonomous. We summarize various mechanisms of intercellular transfer of proteins—trans-endocytosis, trogocytosis, exosomal transport, shuttle through nanotubes, and cell-contact-dependent intercellular transfer of intracellular proteins including oncogenic Ras. These phenomena suggest exciting new possibilities for proteome research, focusing on system-level proteomics that characterize cell contents and functions in the context of intercellular protein transfer.  相似文献   

12.
The anti-CD20 monoclonal antibody (Ab) rituximab is accepted to be an effective therapeutic Ab for malignant B-cell lymphoma; however, discovery of other cell surface antigens is required for the option of antibody medicine. Considering that many tumor-associated antigens are glycans, we have searched glycoconjugates for the candidate antigens that therapeutic Abs target. To this end, we first focused on the difference in the glycogenes expression in terms of Epstein-Barr virus (EBV) infection of a Burkitt’s lymphoma cell line, Akata. Using DNA array, flow cytometry and Western blotting, we found that Thy1 was highly expressed in EBV-positive Akata cells. Subsequently, Thy1 was found to be expressed in other B-cell lymphoma cell lines: BJAB, MutuI, and MutuIII, irrespective of EBV infection. Treatment of these cells with an anti-Thy1 monoclonal antibody inhibited proliferation more strongly than the therapeutic Ab rituximab. The B-cell lymphoma cell lines were classified based on the extent of the proliferation inhibition, which was not correlated with the expression level of Thy1. It is suggested that stable residence of receptor tyrosine kinases in lipid rafts sustains cell growth in B-cell lymphoma cells.  相似文献   

13.
Immune cells establish dynamic adhesive cell-cell interactions at a specific contact region, termed the immunological synapse (IS). Intriguing features of the IS are the formation of regions of plasma membrane fusion and the intercellular exchange of membrane fragments between the conjugated cells. It is not known whether upon IS formation, intact intracellular proteins can transfer from target cells to lymphocytes to allow the transmission of signals across cell boundaries. Here we show by both FACS and confocal microscopy that human lymphocytes acquire from the cells they scan the inner-membrane protein H-Ras, a G-protein vital for common lymphocyte functions and a prominent participant in human cancer. The transfer was cell contact-dependent and occurred in the context of cell-conjugate formation. Moreover, the acquisition of oncogenic H-RasG12V by natural killer (NK) and T lymphocytes had important biological functions in the adopting lymphocytes: the transferred H-RasG12V induced ERK phosphorylation, increased interferon-gamma and tumor necrosis factor-alpha secretion, enhanced lymphocyte proliferation, and augmented NK-mediated target cell killing. Our findings reveal a novel mode of cell-to-cell communication-allowing lymphocytes to extend the confines of their own proteome-which may moreover play an important role in natural tumor immunity.  相似文献   

14.
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.  相似文献   

15.
Antigen-binding B and T cells from chicken spleens were selected on plates of antigen-derived gelatin. Hapten-specific B cells from DNP-immune normal chicken spleens were selected on DNP-gelatin. As much as 165-fold functional enrichment of precursors of anti-DNP antibody-producing cells, as measured in an adoptive transfer system, was achieved. However, the enrichment of DNP-binding cells assessed by rosette formation and autoradiography was no more than 25-fold. HGG-specific T cells from bursectomized agammaglobulinemic chickens immunized with deaggregated HGG were selected on HGG-gelatin. In the fraction adherent to HGG-gelatin, at least a 20-fold enrichment of suppressors of the antibody response to TNP-HGG, as measured by adoptive transfer, was accomplished. In contrast, no more than 6-fold enrichment of HGG-binding cells was detected by autoradiography. Antigen-specific depletion and enrichment of suppressor T cells and of HGG-binding cells occurred in parallel, suggesting that suppressor cells can bind soluble antigen and can be isolated on antigen coupled to a solid support.  相似文献   

16.
Monoclonal antibody 38.13 detects an epitope presented on Burkitt's lymphoma cells that has not been detected on other lymphoid tissues or tumors. The biochemical nature of this Burkitt's lymphoma-associated antigen was investigated by staining inhibition assays. Indirect immunofluorescence and fluorescence-activated cell sorter analysis show that antibody 38.13 reacts with a protease-resistant structure present among the hydrophobic components extracted with chloroform-methanol from the Ramos Burkitt's cell line. These components were further separated by ion-exchange chromatography and activity resides in the unbound (neutral) fraction. The staining antibody is specifically absorbed when preincubated with D-galactose, and to a lesser extent with N-acetyl-galactosamine. Therefore, 38.13 appears to recognize a determinant of carbohydrate nature, which is carried on a neutral glycolipid.  相似文献   

17.
CD20 is a B-cell-specific cell surface protein expressed on mature B lymphocytes and is a target for monoclonal antibody therapy for non-Hodgkin's lymphoma (NHL). Though clear clinical efficacy has been demonstrated with several anti-CD20 antibodies, the mechanisms by which the antibodies activate CD20 and kill cells remain unclear. Proposed mechanisms of action include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and induction of apoptosis. In this report we compared the activity of two anti-CD20 antibodies, Anti-B1 Antibody (tositumomab) and rituximab (C2B8), in a variety of cellular assays using a panel of B-cell lines. Anti-B1 Antibody showed a low level of activity in a CDC assay against complement-sensitive B-cell lines, Ramos and Daudi. We found that there is an inverse correlation between the expression of CD55 and CD59 and CDC mediated by either Anti-B1 Antibody or rituximab. Rituximab was more potent at inducing CDC when compared to Anti-B1 Antibody. Using Raji cells as target cells and human peripheral blood leukocytes as effector cells, Anti-B1 Antibody was a potent inducer of ADCC. The activities of Anti-B1 Antibody and rituximab were nearly identical in the ADCC assay. In addition, Anti-B1 Antibody showed direct induction of apoptosis in all B-cell lines tested. In general, crosslinking Anti-B1 Antibody with a goat anti-mouse Ig did not further enhance the percentage of cells undergoing apoptosis. Importantly, a F(ab')(2) fragment of Anti-B1 Antibody induced apoptosis, while the Fab fragment did not, indicating that the Fc region was not required and dimerization of CD20 may be sufficient for induction of apoptosis. In contrast, rituximab, which binds to an overlapping epitope on CD20 with a three-fold lower affinity than Anti-B1 Antibody, did not efficiently induce apoptosis in the cell lines tested in the absence of crosslinking. In conclusion, these two anti-CD20 antibodies have overlapping, but distinct mechanisms of action on B-cell lines.  相似文献   

18.
19.
Upon specific interaction with APCs, T cells capture membrane fragments and surface molecules in a process termed trogocytosis. In this study, we demonstrate that human Ag-specific CD8(+) T cells acquire the coinhibitory molecule programmed death ligand 1 (PD-L1) from mature dendritic cells (mDC) and tumor cells in an Ag-specific manner. Immature dendritic cells were less effective in transferring surface molecules onto CD8(+) T cells than mDCs. Interestingly, trogocytosis of PD-L1 requires cell-cell contact and cannot be induced by uptake of soluble proteins obtained from mDC lysates. The transfer process is impaired by inhibition of vacuolar ATPases in T cells as well as by fixation of dendritic cells. Of importance, CD8(+) T cells that acquired PD-L1 complexes were able to induce apoptosis of neighboring programmed death 1-expressing CD8(+) T cells. In summary, our data demonstrate that human CD8(+) T cells take up functionally active PD-L1 from APCs in an Ag-specific fashion, leading to fratricide of programmed death 1-expressing, neighboring T cells. The transfer of functionally active coinhibitory molecules from APCs onto human CD8(+) T cells could have a regulatory role in immune responses.  相似文献   

20.
The identification of tumor related cell membrane protein targets is important in understanding tumor progression, the development of new diagnostic tools, and potentially for identifying new therapeutic targets. Here we present a novel strategy for identifying proteins that are altered in their expression levels in a diseased cell using cell specific aptamers. Using an intact viable B-cell Burkitt's lymphoma cell line (Ramos cells) as the target, we have selected aptamers that recognize cell membrane proteins with high affinity. Among the selected aptamers that showed different recognition patterns with different cell lines of leukemia, the aptamer TD05 showed binding with Ramos cells. By chemically modifying TD05 to covalently cross-link with its target on Ramos cells to capture and to enrich the target receptors using streptavidin coated magnetic beads followed by mass spectrometry, we were able to identify membrane bound immunoglobin heavy mu chain as the target for TD05 aptamer. Immunoglobin heavy mu chain is a major component of the B-cell antigen receptor, which is expressed in Burkitt's lymphoma cells. This study demonstrates that this two step strategy, the development of high quality aptamer probes and then the identification of their target proteins, can be used to discover new disease related potential markers and thus enhance tumor diagnosis and therapy. The aptamer based strategy will enable effective molecular elucidation of disease related biomarkers and other interesting molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号