首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
H Xiao  O Perisic  J T Lis 《Cell》1991,64(3):585-593
Drosophila heat shock factor (HSF) exists as a multimer in solution and when bound to its regulatory element (HSE). We have previously reported evidence that subunits of HSF associate to form homotrimers and that each subunit contacts a conserved 5 bp DNA sequence repeated within an HSE. Here we show that HSF binding is highly cooperative at two distinct levels: between subunits of the HSF multimer, and between multimers. The binding of HSF to one of a pair of adjacent trimeric binding sites facilitates HSF binding to the second by over 2000-fold. This cooperativity is particularly important in binding HSF at 37 degrees C, and could account for the requirement for multiple binding sites in vivo and, in part, for the differential expression of heat shock genes.  相似文献   

7.
8.
9.
10.
11.
12.
The role that phosphorylation plays in regulating heat shock factor (HSF) function and activity has been the subject of several studies. Here, we demonstrate that Drosophila melanogaster HSF (DmHSF) is a phosphoprotein that is multiply phosphorylated at some sites and is dephosphorylated at others upon heat shock. However, the steady-state level of phosphorylation of Drosophila HSF remains unchanged after heat shock. Phosphoamino-acid analysis reveals that predominantly serine residues are phosphorylated for both the non-shocked and heat shocked molecules. Gel mobility shift assays using extracts from SL2 cells treated with a variety of phosphatase and kinase inhibitors show little or no effect on the heat shock induced DNA binding activity of HSF or on its recovery. We conclude that phosphorylation plays no significant role in regulating the heat induced DNA binding activity of Drosophila HSF.  相似文献   

13.
14.
15.
16.
17.
The heat shock factor family and adaptation to proteotoxic stress   总被引:4,自引:0,他引:4  
Fujimoto M  Nakai A 《The FEBS journal》2010,277(20):4112-4125
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号