首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic fibrosis (CF) airway epithelium is constantly subjected to injury events due to chronic infection and inflammation. Moreover, abnormalities in CF airway epithelium repair have been described and contribute to the lung function decline seen in CF patients. In the last past years, it has been proposed that anoctamin 1 (ANO1), a Ca2 +-activated Cl? channel, might offset the CFTR deficiency but this protein has not been characterized in CF airways. Interestingly, recent evidence indicates a role for ANO1 in cell proliferation and tumor growth. Our aims were to study non-CF and CF bronchial epithelial repair and to determine whether ANO1 is involved in airway epithelial repair. Here, we showed, with human bronchial epithelial cell lines and primary cells, that both cell proliferation and migration during epithelial repair are delayed in CF compared to non-CF cells. We then demonstrated that ANO1 Cl? channel activity was significantly decreased in CF versus non-CF cells. To explain this decreased Cl? channel activity in CF context, we compared ANO1 expression in non-CF vs. CF bronchial epithelial cell lines and primary cells, in lung explants from wild-type vs. F508del mice and non-CF vs. CF patients. In all these models, ANO1 expression was markedly lower in CF compared to non-CF. Finally, we established that ANO1 inhibition or overexpression was associated respectively with decreases and increases in cell proliferation and migration. In summary, our study demonstrates involvement of ANO1 decreased activity and expression in abnormal CF airway epithelial repair and suggests that ANO1 correction may improve this process.  相似文献   

2.
Cystic fibrosis (CF) is the most common lethal monogenic disorder in Caucasians, estimated to affect one out of 2500-4000 new-borns. In patients with CF, lack of CF transmembrane conductance regulator (CFTR) Cl(-) channel function leads to progressive pulmonary damage and ultimately to death. Severe and persistent polymorphonuclear neutrophil-dominated endobronchial inflammation and chronic bacterial infection are characteristic hallmarks of CF lung disease. Whether CFTR dysfunction results directly in an increased predisposition to infection and whether inflammation arises independent of infection remains to be established. The loss of functional CFTR in airway epithelial cells promotes depletion and increased oxidation of the airway surface liquid. Activated neutrophils present in airways produce large amounts of proteases and reactive oxygen species (ROS). Together these changes are associated with diminished mucociliary clearance of bacteria, activation of epithelial cell signalling through multiple pathways, and subsequent hyperinflammatory responses in CF airways. The NF-kappaB pathway and Ca(2+) mobilization in airway epithelial cells are believed to be of key importance for control of lung inflammation through regulated production of mediators such as interleukin-8 that participate in recruitment and activation of neutrophils, modulation of apoptosis, and control of epithelial barrier integrity. In this review, the current understanding of the molecular mechanisms by which airway epithelial cells contribute to abnormal lung inflammation in CF, as well as the anti-inflammatory strategies that can be proposed are discussed.  相似文献   

3.
Morbidity and mortality in cystic fibrosis (CF) are due not only to abnormal epithelial cell function, but also to an abnormal immune response. We have shown previously that macrophages lacking CF transmembrane conductance regulator (CFTR), the gene mutated in CF, contribute significantly to the hyperinflammatory response observed in CF. In this study, we show that lack of functional CFTR in murine macrophages causes abnormal TLR4 subcellular localization. Upon LPS stimulation, CFTR macrophages have prolonged TLR4 retention in the early endosome and reduced translocation into the lysosomal compartment. This abnormal TLR4 trafficking leads to increased LPS-induced activation of the NF-κB, MAPK, and IFN regulatory factor-3 pathways and decreased TLR4 degradation, which affects downregulation of the proinflammatory state. In addition to primary murine cells, mononuclear cells isolated from CF patients demonstrate similar defects in response to LPS. Moreover, specific inhibition of CFTR function induces abnormal TLR4 trafficking and enhances the inflammatory response of wild-type murine cells to LPS. Thus, functional CFTR in macrophages influences TLR4 spatial and temporal localization and perturbs LPS-mediated signaling in both murine CF models and patients with CF.  相似文献   

4.
T cell immunoglobulin and mucin protein 3 (TIM-3) is a type I cell surface protein that was originally identified as a marker for murine T helper type 1 cells. TIM-3 was found to negatively regulate murine T cell responses and galectin-9 was described as a binding partner that mediates T cell inhibitory effects of TIM-3. Moreover, it was reported that like PD-1 the classical exhaustion marker, TIM-3 is up-regulated in exhausted murine and human T cells and TIM-3 blockade was described to restore the function of these T cells. Here we show that the activation of human T cells is not affected by the presence of galectin-9 or antibodies to TIM-3. Furthermore, extensive studies on the interaction of galectin-9 with human and murine TIM-3 did not yield evidence for specific binding between these molecules. Moreover, profound differences were observed when analysing the expression of TIM-3 and PD-1 on T cells of HIV-1-infected individuals: TIM-3 was expressed on fewer cells and also at much lower levels. Furthermore, whereas PD-1 was preferentially expressed on CD45RACD8 T cells, the majority of TIM-3-expressing CD8 T cells were CD45RA+. Importantly, we found that TIM-3 antibodies were ineffective in increasing anti-HIV-1 T cell responses in vitro, whereas PD-L antibodies potently reverted the dysfunctional state of exhausted CD8 T cells. Taken together, our results are not in support of an interaction between TIM-3 and galectin-9 and yield no evidence for a functional role of TIM-3 in human T cell activation. Moreover, our data indicate that PD-1, but not TIM-3, is a promising target to ameliorate T cell exhaustion.  相似文献   

5.
Cystic fibrosis (CF), the most common life-threatening inherited disease in Caucasians, is due to mutations in the CF transmembrane conductance regulator (CFTR) gene and is characterized by airways chronic inflammation and pulmonary infections. The inflammatory response is not secondary to the pulmonary infections. Indeed, several studies have shown an increased proinflammatory activity in the CF tissues, regardless of bacterial infections, because inflammation is similarly observed in CFTR-defective cell lines kept in sterile conditions. Despite recent studies that have indicated that CF airway epithelial cells can spontaneously initiate the inflammatory cascade, we still do not have a clear insight of the molecular mechanisms involved in this increased inflammatory response. In this study, to understand these mechanisms, we investigated ex vivo cultures of nasal polyp mucosal explants of CF patients and controls, CFTR-defective IB3-1 bronchial epithelial cells, C38 isogenic CFTR corrected, and 16HBE normal bronchial epithelial cell lines. We have shown that a defective CFTR induces a remarkable up-regulation of tissue transglutaminase (TG2) in both tissues and cell lines. The increased TG2 activity leads to functional sequestration of the anti-inflammatory peroxisome proliferator-activated receptor gamma and increase of the classic parameters of inflammation, such as TNF-alpha, tyrosine phosphorylation, and MAPKs. Specific inhibition of TG2 was able to reinstate normal levels of peroxisome proliferator-activated receptor-gamma and dampen down inflammation both in CF tissues and CFTR-defective cells. Our results highlight an unpredicted central role of TG2 in the mechanistic pathway of CF inflammation, also opening a possible new wave of therapies for sufferers of chronic inflammatory diseases.  相似文献   

6.
In a previous study of sodium 4-phenylbutyrate (4-PBA)-responsive proteins in cystic fibrosis (CF) IB3-1 bronchial epithelial cells, we identified 85 differentially expressed high abundance proteins from whole cellular lysate (Singh, O. V., Vij, N., Mogayzel, P. J., Jr., Jozwik, C., Pollard, H. B., and Zeitlin, P. L. (2006) Pharmacoproteomics of 4-phenylbutyrate-treated IB3-1 cystic fibrosis bronchial epithelial cells. J. Proteome Res. 5, 562-571). In the present work we hypothesize that a subset of heat shock proteins that interact with cystic fibrosis transmembrane conductance regulator (CFTR) in common during chemical rescue and genetic repair will identify therapeutic networks for targeted intervention. Immunocomplexes were generated from total cellular lysates, and three subcellular fractions (endoplasmic reticulum (ER), cytosol, and plasma membrane) with anti-CFTR polyclonal antibody from CF (IB3-1), chemically rescued CF (4-PBA-treated IB3-1), and genetically repaired CF (IB3-1/S9 daughter cells repaired by gene transfer with adeno-associated virus-(wild type) CFTR). CFTR-interacting proteins were analyzed on two-dimensional gels and identified by mass spectrometry. A set of 16 proteins known to act in ER-associated degradation were regulated in common and functionally connected to the protein processing, protein folding, and inflammatory response. Some of these proteins were modulated exclusively in ER, cytosol, or plasma membrane. A subset of 4-PBA-modulated ER-associated degradation chaperones (GRP94, HSP84, GRP78, GRP75, and GRP58) was observed to associate with the immature B form of CFTR in ER. HSP70 and HSC70 interacted with the C band (mature form) of CFTR at the cell surface. We conclude that chemically rescued CFTR associates with a specific set of HSP70 family proteins that mark therapeutic interactions and can be useful to correct both ion transport and inflammatory phenotypes in CF subjects.  相似文献   

7.
AMP-activated kinase (AMPK) is a ubiquitous metabolic sensor that inhibits the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). To determine whether CFTR reciprocally regulates AMPK function in airway epithelia and whether such regulation is involved in lung inflammation, AMPK localization, expression, and activity and cellular metabolic profiles were compared as a function of CFTR status in CF and non-CF primary human bronchial epithelial (HBE) cells. As compared with non-CF HBE cells, CF cells had greater and more diffuse AMPK staining and had greater AMPK activity than their morphologically matched non-CF counterparts. The cellular [AMP]/[ATP] ratio was higher in undifferentiated than in differentiated non-CF cells, which correlated with AMPK activity under these conditions. However, this nucleotide ratio did not predict AMPK activity in differentiating CF cells. Inhibiting channel activity in non-CF cells did not affect AMPK activity or metabolic status, but expressing functional CFTR in CF cells reduced AMPK activity without affecting cellular [AMP]/[ATP]. Therefore, lack of functional CFTR expression and not loss of channel activity in CF cells appears to up-regulate AMPK activity in CF HBE cells, presumably through non-metabolic effects on upstream regulatory pathways. Compared with wild-type CFTR-expressing immortalized CF bronchial epithelial (CFBE) cells, DeltaF508-CFTR-expressing CFBE cells had greater AMPK activity and greater secretion of tumor necrosis factor-alpha and the interleukins IL-6 and IL-8. Further pharmacologic AMPK activation inhibited inflammatory mediator secretion in both wild type- and DeltaF508-expressing cells, suggesting that AMPK activation in CF airway cells is an adaptive response that reduces inflammation. We propose that therapies to activate AMPK in the CF airway may be beneficial in reducing excessive airway inflammation, a major cause of CF morbidity.  相似文献   

8.
Expression of a mutated cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to enhance proliferation within CF airways, and cells expressing a mutated CFTR have been shown to be less susceptible to apoptosis. Because the CFTR is expressed in the epithelial cells lining the gastrointestinal tract and all CF mouse models are characterized by gastrointestinal obstruction, we hypothesized that CFTR null mice would have increased epithelial cell proliferation and reduced apoptosis within the small intestine. The rate of intestinal epithelial cell migration from crypt to villus was increased in CFTR null mice relative to mice expressing the wild-type CFTR. This difference in migration could be explained by an increase in epithelial cell proliferation but not by a difference in apoptosis within the crypts of Lieberkühn. In addition, using two independent sets of CF cell lines, we found that epithelial cell susceptibility to apoptosis was unrelated to the presence of a functional CFTR. Thus increased proliferation but not alterations in apoptosis within epithelial cells might contribute to the pathophysiology of CF.  相似文献   

9.
10.
Chan MM  Chmura K  Chan ED 《Cytokine》2006,33(6):309-316
A satisfactory model describing the airway surface fluid (ASF) in the airways of persons with cystic fibrosis (CF) remains to be established due to theoretical challenges to both the "Hydration Hypothesis" and the "Salt Hypothesis." Irrespective of these models, inhaled hypertonic saline is often used to facilitate clearance of inspissated secretions. Hypertonicity induces interleukin-8 (IL-8) expression, a potent chemokine for neutrophils. The objectives of this study were: (i) to determine the relative contribution of three potential cis-regulatory elements in the regulation of NaCl-induced IL-8 production in BEAS-2B human bronchial epithelial cells, (ii) to compare NaCl-induced IL-8 expression in IB3-1 bronchial epithelial cells, which have the DeltaF508/W1282X mutation of the CF transmembrane conductance regulator (CFTR) gene, with that in C38 cells, which are IB3-1 cells stably transfected with a truncated but functional CFTR gene, and (iii) to compare equal osmolar concentrations of NaCl and D-sorbitol in the induction of IL-8 in all three cell types. In human bronchial epithelial cells, binding sites for NFkappaB, AP-1, and NF-IL6 in the 5'-flanking region of the IL-8 promoter are necessary for optimal NaCl induction of IL-8. Human bronchial epithelial cells with the DeltaF508/W1282X CFTR mutation produce an exaggerated amount of basal and NaCl-induced IL-8.  相似文献   

11.
S-nitrosothiols (SNOs) are endogenous signaling molecules with a broad spectrum of beneficial airway effects. SNOs are normally present in the airway, but levels tend to be low in cystic fibrosis (CF) patients. We and others have demonstrated that S-nitrosoglutathione (GSNO) increases the expression, maturation, and function of wild-type and mutant F508del cystic fibrosis transmembrane conductance regulator (CFTR) in human bronchial airway epithelial (HBAE) cells. We hypothesized that membrane permeable SNOs, such as S-nitrosoglutathione diethyl ester (GNODE) and S-nitroso-N-acetyl cysteine (SNOAC) may be more efficient in increasing the maturation of CFTR. HBAE cells expressing F508del CFTR were exposed to GNODE and SNOAC. The effects of these SNOs on the expression and maturation of F508del CFTR were determined by cell surface biotinylation and Western blot analysis. We also found for the first time that GNODE and SNOAC were effective at increasing CFTR maturation at the cell surface. Furthermore, we found that cells maintained at low temperature increased cell surface stability of F508del CFTR whereas the combination of low temperature and SNO treatment significantly extended the half-life of CFTR. Finally, we showed that SNO decreased the internalization rate of F508del CFTR in HBAE cells. We anticipate identifying the novel mechanisms, optimal SNOs, and lowest effective doses which could benefit cystic fibrosis patients.  相似文献   

12.
Cystic fibrosis (CF) is a genetic disease characterized by severe neutrophil-dominated airway inflammation. An important cause of inflammation in CF is Pseudomonas aeruginosa infection. We have evaluated the importance of a number of P. aeruginosa components, namely lipopeptides, LPS, and unmethylated CpG DNA, as proinflammatory stimuli in CF by characterizing the expression and functional activity of their cognate receptors, TLR2/6 or TLR2/1, TLR4, and TLR9, respectively, in a human tracheal epithelial line, CFTE29o(-), which is homozygous for the DeltaF508 CF transmembrane conductance regulator mutation. We also characterized TLR expression and function in a non-CF airway epithelial cell line 16HBE14o(-). Using RT-PCR, we demonstrated TLR mRNA expression. TLR cell surface expression was assessed by fluorescence microscopy. Lipopeptides, LPS, and unmethylated CpG DNA induced IL-8 and IL-6 protein production in a time- and dose-dependent manner. The CF and non-CF cell lines were largely similar in their TLR expression and relative TLR responses. ICAM-1 expression was also up-regulated in CFTE29o(-) cells following stimulation with each agonist. CF bronchoalveolar lavage fluid, which contains LPS, bacterial DNA, and neutrophil elastase (a neutrophil-derived protease that can activate TLR4), up-regulated an NF-kappaB-linked reporter gene and increased IL-8 protein production in CFTE29o(-) cells. This effect was abrogated by expression of dominant-negative versions of MyD88 or Mal, key signal transducers for TLRs, thereby implicating them as potential anti-inflammatory agents for CF.  相似文献   

13.
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.  相似文献   

14.
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in cftr, a gene encoding a PKA-regulated Cl(-) channel. The most common mutation results in a deletion of phenylalanine at position 508 (DeltaF508-CFTR) that impairs protein folding, trafficking, and channel gating in epithelial cells. In the airway, these defects alter salt and fluid transport, leading to chronic infection, inflammation, and loss of lung function. There are no drugs that specifically target mutant CFTR, and optimal treatment of CF may require repair of both the folding and gating defects. Here, we describe two classes of novel, potent small molecules identified from screening compound libraries that restore the function of DeltaF508-CFTR in both recombinant cells and cultures of human bronchial epithelia isolated from CF patients. The first class partially corrects the trafficking defect by facilitating exit from the endoplasmic reticulum and restores DeltaF508-CFTR-mediated Cl(-) transport to more than 10% of that observed in non-CF human bronchial epithelial cultures, a level expected to result in a clinical benefit in CF patients. The second class of compounds potentiates cAMP-mediated gating of DeltaF508-CFTR and achieves single-channel activity similar to wild-type CFTR. The CFTR-activating effects of the two mechanisms are additive and support the rationale of a drug discovery strategy based on rescue of the basic genetic defect responsible for CF.  相似文献   

15.
Alveolar macrophages are poor APCs that only minimally express B7 costimulatory molecules. Because our previous data suggest that bronchial epithelial cells constitutively secrete IL-10, and IL-10 inhibits B7 expression in vitro, we hypothesized that this IL-10 is responsible for suppressing B7 expression on macrophages that enter the airways. Furthermore, because we have shown that cystic fibrosis (CF) lungs are deficient in IL-10, we hypothesized that bronchoalveolar macrophages (BALMs) from cystic fibrosis transmembrane conductance regulator (CFTR)(-/-) as well as IL-10(-/-) mice might express increased B7. Immunofluorescence for B7 was positive on BALMs from CF patients and CFTR(-/-) and IL-10(-/-) mice, but was negative on controls. FACS showed that 63.9% of BALMs from IL-10(-/-) mice were B7-1 positive, as were 67.4% of BALMs from CFTR(-/-) mice, whereas <7% of BALMs from wild-type controls were positive. Using BALMs to costimulate splenic T cells with anti-CD3 as a mitogen showed 9202 +/- 2107 cpm [(3)H]thymidine incorporation for BALMs from IL-10(-/-) mice and 4082 +/- 1036 cpm for BALMs from CFTR(-/-) mice, but <200 cpm with BALMs from either type of +/+ mouse. Treatment of CFTR(-/-) mice with recombinant mouse IL-10 reduced the B7 expression and costimulatory activity of the BALMs. These data suggest that the IL-10 secreted in the healthy lung may be responsible for the absence of B7 and poor costimulatory activity of BALMs and that reductions of pulmonary IL-10 in CF may enhance B7 expression and local immune responses.  相似文献   

16.
Transient transfection of epithelial cells with lipid reagents has been limited because of toxicity and lack of efficacy. In this study, we show that more recently developed lipids transfect nonpolarized human airway epithelial cells with high efficacy and efficiency and little or no toxicity. Because of this success, we hypothesized that these lipids may also allow transient transfection of polarized epithelial monolayers. A panel of reagents was tested for transfer of the reporter gene luciferase (LUC) into polarized monolayers of non-cystic fibrosis (non-CF) and CF human bronchial epithelial cells, MDCK epithelial cell monolayers, and, ultimately, primary non-CF and CF airway epithelial cells. Lipid reagents, which were most successful in initial LUC assays, were also tested for transfer of vectors bearing the reporter gene green fluorescent protein (GFP) and for successful transfection and expression of an epithelial-specific protein, the cystic fibrosis transmembrane conductance regulator (CFTR). Electrophysiological, biochemical, and immunological assays were performed to show successful complementation of an epithelial monolayer with transiently expressed CFTR. We also present findings that help facilitate monolayer formation by these airway epithelial cell lines. Together, these data show that polarized monolayers are transfected transiently with more recently developed lipids, specifically LipofectAMINE PLUS and LipofectAMINE 2000. Transient transfection of epithelial monolayers provides a powerful system in which to express the cDNA of any epithelium-specific protein transiently in a native polarized epithelium to study protein function.  相似文献   

17.
18.
19.
Immortalization of human bronchial epithelial (hBE) cells often entails loss of differentiation. Bmi-1 is a protooncogene that maintains stem cells, and its expression creates cell lines that recapitulate normal cell structure and function. We introduced Bmi-1 and the catalytic subunit of telomerase (hTERT) into three non-cystic fibrosis (CF) and three DeltaF508 homozygous CF primary bronchial cell preparations. This treatment extended cell life span, although not as profoundly as viral oncogenes, and at passages 14 and 15, the new cell lines had a diploid karyotype. Ussing chamber analysis revealed variable transepithelial resistances, ranging from 200 to 1,200 Omega.cm(2). In the non-CF cell lines, short-circuit currents were stimulated by forskolin and inhibited by CFTR(inh)-172 at levels mostly comparable to early passage primary cells. CF cell lines exhibited no forskolin-stimulated current and minimal CFTR(inh)-172 response. Amiloride-inhibitable and UTP-stimulated currents were present, but at lower and higher amplitudes than in primary cells, respectively. The cells exhibited a pseudostratified morphology, with prominent apical membrane polarization, few apoptotic bodies, numerous mucous secretory cells, and occasional ciliated cells. CF and non-CF cell lines produced similar levels of IL-8 at baseline and equally increased IL-8 secretion in response to IL-1beta, TNF-alpha, and the Toll-like receptor 2 agonist Pam3Cys. Although they have lower growth potential and more fastidious growth requirements than viral oncogene transformed cells, Bmi-1/hTERT airway epithelial cell lines will be useful for several avenues of investigation and will help fill gaps currently hindering CF research and therapeutic development.  相似文献   

20.
The mid‐infrared (IR) spectra of human cystic fibrosis (CF) cells acquired by Fourier transform infrared microspectroscopy were compared with those of non‐CF cells. Within the 1700 to 1480 cm?1 spectral domain of amides, unsupervised explorative principal component analysis identified a few variables reflecting quantitative and qualitative vibrations arising from protein secondary structures and amino acid side chains. Their pattern reflected α‐helix to β‐sheet transitions in bronchial epithelial cells and in immortalized peripheral blood mononuclear cells from patients with R1162X missense or in‐frame F508del mutations in the cystic fibrosis transmembrane regulator gene (Cftr). Similar transitions have been described in IR spectra of cells, tissues and body fluids of patients affected with some neurodegenerative diseases characterized by the accumulation of misfolded protein aggregates. The variables pattern was able to distinguish CF cells from non‐CF cells and was modified by molecular compounds used to rescue the unbalanced folding process of mutated cystic fibrosis transmembrane regulator (CFTR) anion channel. To our knowledge, this is the first experimental evidence of spectroscopic biomarkers of the impaired biogenesis of CFTR by IR microanalysis in the spectra of human CF bronchial epithelial and lymphoblastoid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号