首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
PURPOSE OF REVIEW: In diabetes, oxidative stress plays a key role in the pathogenesis of vascular complications; therefore an antioxidant therapy would be of great interest in this disease. RECENT FINDINGS: Hyperglycemia directly promotes an endothelial dysfunction--inducing process of overproduction of superoxide at the mitochondrial level. This is the first and key event able to activate all the pathways involved in the development of vascular complications of diabetes. It has recently been shown that statins, angiotensin-converting enzyme inhibitors, angiotensin II type 1 blockers, calcium channel blockers, and thiazolidinediones have a strong intracellular antioxidant activity. SUMMARY: Classic antioxidants, such as vitamin E, failed to show beneficial effects on diabetic complications probably because their action is only "symptomatic". The preventive activity against hyperglycemia-induced oxidative stress shown by statins, angiotensin-converting enzyme inhibitors, angiotensin II type 1 blockers, calcium channel blockers, and thiazolidinediones justifies use of these compounds for preventing complications in patients with diabetes, in whom antioxidant defences have been shown to be defective.  相似文献   

2.
Abstract

This study aimed to evaluate the organelle-specific antioxidant/pro-oxidant actions of clinically important dietary antioxidants against oxidative stress. An in vitro cellular model was employed to investigate the antioxidant/pro-oxidant effects of various concentrations (1, 10 and 100 μM) of ascorbic acid, α-tocopherol and β-carotene during H2O2-induced oxidative stress. Damage to nuclear and mitochondrial genomes was analyzed by quantitative polymerase chain reaction and oxidation of membrane lipids was measured via colorimetric assays. The key findings were: (i) dietary antioxidants conferred a dose-dependent protective effect (with a pro-oxidant shift at higher concentrations); (ii) the protection conferred to different sub-cellular organelles is highly specific to the dietary antioxidant; (iii) the mtDNA is highly sensitive to oxidative attack compared to nDNA (P < 0.05); and (iv) mtDNA protection conferred by dietary antioxidants was required to improve protection against oxidative-induced cell death. This study shows that antioxidant-induced protection of mtDNA is an important target for future oxidative stress therapies.  相似文献   

3.
Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system.  相似文献   

4.
Cigarette/tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress are intimately associated with the progression and exacerbation of chronic obstructive pulmonary disease (COPD). Therefore, targeting systemic and local oxidative stress with antioxidants/redox modulating agents, or boosting the endogenous levels of antioxidants are likely to have beneficial effects in the treatment/management of COPD. Various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine), have been reported to modulate various cellular and biochemical aspects of COPD. These antioxidants have been found to scavenge and detoxify free radicals and oxidants, regulate of glutathione biosynthesis, control nuclear factor-kappaB (NF-kappaB) activation, and hence inhibiting inflammatory gene expression. Synthetic molecules, such as specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, iNOS and myeloperoxidase inhibitors, lipid peroxidation inhibitors/blockers edaravone, and lazaroids/tirilazad have also been shown to have beneficial effects by inhibiting cigarette smoke-induced inflammatory responses and other carbonyl/oxidative stress-induced cellular alterations. A variety of oxidants, free radicals, and carbonyls/aldehydes are implicated in the pathogenesis of COPD, it is therefore, possible that therapeutic administration or supplementation of multiple antioxidants and/or boosting the endogenous levels of antioxidants will be beneficial in the treatment of COPD. This review discusses various novel pharmacological approaches adopted to enhance lung antioxidant levels, and various emerging beneficial and/or prophylactic effects of antioxidant therapeutics in halting or intervening the progression of COPD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

5.
Based on the “free radical theory” of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that reactive oxygen species and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding of reactive oxygen species has evolved to the point at which we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review addresses our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology.  相似文献   

6.
《Free radical research》2013,47(6-7):451-462
Abstract

Aging and neurodegenerative diseases share oxidative stress cell damage and depletion of endogenous antioxidants as mechanisms of injury, phenomena that are occurring at different rates in each process. Nevertheless, as the central nervous system (CNS) consists largely of lipids and has a poor catalase activity, a low amount of superoxide dismutase and is rich in iron, its cellular components are damaged easily by overproduction of free radicals in any of these physiological or pathological conditions. Thus, antioxidants are needed to prevent the formation and to oppose the free radicals damage to DNA, lipids, proteins, and other biomolecules. Due to endogenous antioxidant defenses are inadequate to prevent damage completely, different efforts have been undertaken in order to increase the use of natural antioxidants and to develop antioxidants that might ameliorate neural injury by oxidative stress. In this context, natural antioxidants like flavonoids (quercetin, curcumin, luteolin and catechins), magnolol and honokiol are showing to be the efficient inhibitors of the oxidative process and seem to be a better therapeutic option than the traditional ones (vitamins C and E, and β-carotene) in various models of aging and injury in vitro and in vivo conditions. Thus, the goal of the present review is to discuss the molecular basis, mechanisms of action, functions, and targets of flavonoids, magnolol, honokiol and traditional antioxidants with the aim of obtaining better results when they are prescribed on aging and neurodegenerative diseases.  相似文献   

7.
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH· formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing “biomarkers” of oxidative DNA damage are questioning the “antioxidant” roles of β-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.  相似文献   

8.
Oxidised bases, such as 8-oxo-guanine, occur in cellular DNA as a result of attack by oxygen free radicals. The cancer-protective effect of vegetables and fruit is attributed to the ability of antioxidants in them to scavenge free radicals, preventing DNA damage and subsequent mutation. Antioxidant supplements (e.g., β-carotene, vitamin C) increase the resistance of lymphocytes to oxidative damage, and a negative correlation is seen between antioxidant concentrations in tissues and oxidised bases in DNA. Large-scale intervention trials with β-carotene have, however, led to increases in cancer. Recent measurements of the frequency of oxidised DNA bases indicate that earlier estimates were greatly exaggerated; there may be only a few thousand 8-oxo-guanines per cell. Convincing evidence for mutations resulting from oxidative damage, in tumours or cultured cells, is lacking. It seems that efficient antioxidant defences together with DNA repair maintain a steady-state level of damage representing minimal risk to cell or organism. BioEssays 21:238–246, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

9.
Aberrant androgen receptor (AR) signaling plays a critical role in androgen-dependent prostate cancer (PCa), as well as in castration-resistant PCa (CRPC). Oxidative stress seems to contribute to the tumorigenesis and progression of PCa, as well as the development of CRPC, via activation of AR signaling. This notion is supported by the fact that there is an aberrant or improper regulation of the redox status in these disorders. Additionally, androgen-deprivation-induced oxidative stress seems to be involved in the pathogenesis of several disorders caused by androgen-deprivation therapy (ADT), including osteoporosis, neurodegenerative disease, and cardiovascular disease. Oxidative stress can be suppressed with antioxidants or via a reduction in reactive oxygen species production. Thus, developing new therapeutic agents that reduce oxidative stress might be useful in preventing the conversion of androgen-dependent PCa into CRPC, as well as reducing the adverse effects associated with ADT. The objective of this review is to provide an overview regarding the relationship between oxidative stress and AR signaling in the context of PCa and especially CRPC. Additionally, we discuss the potential use of antioxidant therapies in the treatment of PCa.  相似文献   

10.
In recent years it has become clear that various free radicals and related oxidants can cause serious damage to intracellular enzymes and other proteins. Several investigators have shown that in extreme cases this can result in an accumulation of oxidatively damaged proteins as useless cellular debris. In other instances, proteins may undergo scission reactions with certain radicals/oxidants, resulting in the direct formation of potentially toxic peptide fragments. Data has also been gathered (recently) demonstrating that various intracellular proteolytic enzymes or systems can recognize, and preferentially degrade, oxidatively damaged proteins (to amino acids). In this hypothesis paper I present evidence to suggest that proteolytic systems (of proteinases, proteases, and peptidases) may function to prevent the formation or accumulation of oxidatively damaged protein aggregates. Proteolytic systems can also preferentially degrade peptide fragments and may thus prevent a wide variety of potentially toxic consequences. I propose that many proteolytic enzymes may be important components of overall antioxidant defenses because they can act to ameliorate the consequences of oxidative damage. A modified terminology is suggested in which the primary antioxidants are such agents as vitamin E, β-carotene, and uric acid and such enzymes as Superoxide dismutase, glutathione peroxidase, and DT-diaphorase. In this classification scheme, proteolytic systems, DNA repair systems, and certain lipolytic enzymes would be considered as secondary antioxidant defenses. As secondary antioxidant defenses, proteolytic systems may be particularly important in times of high oxidative stress, during periods of (primary) antioxidant insufficiency, or with advancing age.  相似文献   

11.
Hypertension is considered as the most common risk factor for cardiovascular diseases, also is regarded as a leading cause of the mortality and morbidity worldwide. The mechanisms underlying the pathological process of hypertension are not completely explained. However, there is growing evidence that increased oxidative stress plays an important role in the pathophysiology of hypertension. Several preclinical studies and clinical trials have indicated that antioxidant therapy is important for management of hypertension, using antioxidants compounds such as alpha tocopherol (Vit E) and ascorbic acid (Vit C), polyphenols with others and some antihypertensive drugs that are now in clinical use (e.g. ACEIs, ARBs, novel B-blockers, dihydropyridine CCBs) which have antioxidative pleiotropic effects. The purpose of this review is to highlight the importance of antioxidant therapy for management of oxidative stress induced hypertension. Furthermore, we review the current knowledge in the oxidative stress and its significance in hypertension.  相似文献   

12.
Can antioxidants be beneficial in the treatment of lead poisoning?   总被引:29,自引:0,他引:29  
Recent studies have shown that lead causes oxidative stress by inducing the generation of reactive oxygen species, reducing the antioxidant defense system of cells via depleting glutathione, inhibiting sulfhydryl-dependent enzymes, interfering with some essential metals needed for antioxidant enzyme activities, and/or increasing susceptibility of cells to oxidative attack by altering the membrane integrity and fatty acid composition. Consequently, it is plausible that impaired oxidant/antioxidant balance can be partially responsible for the toxic effects of lead. Where enhanced oxidative stress contributes to lead-induced toxicity, restoration of a cell's antioxidant capacity appears to provide a partial remedy. Several studies are underway to determine the effect of antioxidant supplementation following lead exposure. Data suggest that antioxidants may play an important role in abating some hazards of lead. To explain the importance of using antioxidants in treating lead poisoning the following topics are addressed: (i) Oxidative damage caused by lead poisoning; (ii) conventional treatment of lead poisoning and its side effects; and (iii) possible protective effects of antioxidants in lead toxicity.  相似文献   

13.
Oxidative stress contributes to the pathogenesis of diabetes and its complications. However, a large number of interventional studies have failed to show any health benefits of antioxidants. The overwhelming failure of antioxidant therapy to prevent disease can be explained by inadequacy of the doses of antioxidants used, short duration of therapy, or poor timing of initiation of the supplementation. A more likely reason for failure of antioxidants to reduce diabetes-related complications is the multiplicity of mechanisms of glucotoxicity that are independent of oxidative stress. Recently, endoplasmic reticulum (ER) stress has emerged as an important contributor to diabetes-related complications. Multiple lines of experimental evidence indicate that ER stress in endothelial cells can be uncoupled from oxidative stress induced by hyperglycemia, and antioxidants can ameliorate the latter without altering the ER stress. These observations provide a novel mechanistic explanation for the failure of antioxidant therapy in interventional clinical trials.  相似文献   

14.
Oxidative stress is a constant threat to all living organisms and an immense repertoire of cellular defense systems is being employed by most pro- and eukaryotic systems to eliminate or to attenuate oxidative stress. Ischemia and reperfusion is characterized by both a significant oxidative stress and characteristic changes in the antioxidant defense. By focusing on this antioxidant response of the cardiovascular system in the setting of ischemia-reperfusion injury, the aim of this review was threefold. First, based on recent animal experiments and clinical studies we shall discuss how endogenous antioxidants respond to oxidative stress during ischemia-reperfusion injury and highlight the results of recent trials on the ability of antioxidants to modulate ischemia-reperfusion injury. In this aspect, we will particularly focus on the emerging concept that various lines of antioxidant defenses do not act individually but are linked to each other in a systematic relationship as part of an antioxidant network. It is well known that enzymatic mechanisms are important components of the endogenous antioxidant repertoire; however, the relative importance of the different enzyme systems and isoforms has been much debated. The second part will focus on recent suggestions attributing a potentially key role of mitochondrial MnSOD in cardiac ischemia-reperfusion injury. Finally, the third part of the review will critically examine how endogenous antioxidants might regulate the complex signal transduction pathways of cellular activation with particular attention to the NF-kappaB and MAPK systems that appears to determine outcome of injury, survival, and adaptation.  相似文献   

15.
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH· formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing “biomarkers” of oxidative DNA damage are questioning the “antioxidant” roles of β-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.  相似文献   

16.
Plant-food-derived antioxidants and active principles such as flavonoids, hydroxycinnamates (ferulic acid, chlorogenic acids, vanillin etc.), β-carotene and other carotenoids, vitamin E, vitamin C, or rosemary, sage, tea and numerous extracts are increasingly proposed as important dietary antioxidant factors. In this endeavor, assays involving oxidative DNA damage for characterizing the potential antioxidant actions are suggested as in vitro screens of antioxidant efficacy. The critical question is the bioavailability of the plant-derived antioxidants.  相似文献   

17.
Oxidative stress and aberrant signaling in aging and cognitive decline   总被引:7,自引:0,他引:7  
Dröge W  Schipper HM 《Aging cell》2007,6(3):361-370
Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions. Autophagic proteolysis and sirtuin activity, in turn, are downregulated by the insulin signaling pathway, and impaired autophagic activity has been associated with neurodegeneration. In genetic studies, impairment of insulin receptor signaling causes spectacular lifespan extension in nematodes, fruit flies, and mice. The predicted effects of age-related oxidative stress on sirtuins and autophagic activity and the corresponding effects of antioxidants remain to be tested experimentally. However, several correlates of aging have been shown to be ameliorated by antioxidants. Oxidative damage to mitochondrial DNA and the electron transport chain, perturbations in brain iron and calcium homeostasis, and changes in plasma cysteine homeostasis may altogether represent causes and consequences of increased oxidative stress. Aging and cognitive decline thus appear to involve changes at multiple nodes within a complex regulatory network.  相似文献   

18.
Neuronal cell death as a result of apoptosis is associated with cerebrovascular stroke and various neurodegenerative disorders. Pharmacological agents that maintain normal intracellular Ca2+ levels and inhibit cellular oxidative stress may be effective in blocking abnormal neuronal apoptosis. In this study, a spontaneous (also referred to as age-induced) model of apoptosis consisting of rat cerebellar granule cells was used to evaluate the antiapoptotic activities of voltage-sensitive Ca2+ channel blockers and various antioxidants. The results of these experiments demonstrated that the charged, dihydropyridine Ca2+ channel blocker amlodipine had very potent neuroprotective activity in this system, compared with antioxidants and neutral Ca2+ channel blockers (nifedipine and nimodipine). Within its effective pharmacological range (10-100 nM), amlodipine attenuated intracellular neuronal Ca2+ increases elicited by KCl depolarization but did not affect Ca2+ changes triggered by N-methyl-D-aspartate receptor activation. Amlodipine also inhibited free radical-induced damage to lipid constituents of the membrane in a dose-dependent manner, independent of Ca2+ channel modulation. In parallel experiments, spontaneous neuronal apoptosis was inhibited in dose- and time-dependent manners by antioxidants (U-78439G, alpha-tocopherol, and melatonin), nitric oxide synthase inhibitors (N-nitro-L-arginine and N-nitro-D-arginine), and a nitric oxide chelator (hemoglobin) in the micromolar range. These results suggest that spontaneous neuronal apoptosis is associated with excessive Ca2+ influx, leading to further intracellular Ca2+ increases and the generation of reactive oxygen species. Agents such as amlodipine that block voltage-sensitive Ca2+ channels and inhibit cellular oxidative stress may be effective in the treatment of cerebrovascular stroke and neurodegenerative diseases associated with excessive apoptosis.  相似文献   

19.
Patients with diabetes mellitus are likely to develop certain complication such as retinopathy, nephropathy and neuropathy as a result of oxidative stress and overwhelming free radicals. Treatment of diabetic patients with antioxidant may be of advantage in attenuating these complications. Oleuropein, the active constituent of olive leaf (Olea europaea), has been endowed with many beneficial and health promoting properties mostly linked to its antioxidant activity. This study aimed to evaluate the significance of supplementation of oleuropein in reducing oxidative stress and hyperglycemia in alloxan-induced diabetic rabbits. After induction of diabetes, a significant rise in plasma and erythrocyte malondialdehyde (MDA) and blood glucose as well as alteration in enzymatic and non-enzymatic antioxidants was observed in all diabetic animals. During 16 weeks of treatment of diabetic rabbits with 20 mg/kg body weight of oleuropein the levels of MDA along with blood glucose and most of the enzymatic and non-enzymatic antioxidants were significantly restored to establish values that were not different from normal control rabbits. Untreated diabetic rabbits on the other hand demonstrated persistent alterations in the oxidative stress marker MDA, blood glucose and the antioxidant parameters. These results demonstrate that oleuropein may be of advantage in inhibiting hyperglycemia and oxidative stress induced by diabetes and suggest that administration of oleuropein may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

20.
Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号