共查询到20条相似文献,搜索用时 0 毫秒
1.
This study (1970–71) of an oligotrophic lake subject to cultural enrichment indicates the presence of complex interrelations between plankton and nitrogen levels in surface waters. Generally inorganic nitrogen was high in the winter (0.4–0.5 ppm) and Iow in summer (less than 0-1 ppm). However, in late July and August a large increase in nitrogen (1.5 ppm) was recorded. This correlated with the Gloeotrichia echinulata J. E. Smith ex P. Richt. bloom (Cyanophyceae) and the increase in nitrogen fixation, or nitrogenase activity (measured as acetylene reduction). It was calculated that the cyanophyte bloom could have contributed a minimum of 2350 kg nitrogen to the lake in August 1970 which is c. 62% of the nitrate-nitrogen occurring at any time. 相似文献
2.
Effects of macrophyte-associated nitrogen cycling bacteria on denitrification in the sediments of the eutrophic Gonghu Bay, Taihu Lake 总被引:2,自引:0,他引:2
Integrated Elodea nuttallii-immobilized nitrogen cycling bacteria (INCB) technology was used for ecological restoration in the eutrophic Gonghu Bay, Taihu Lake. Sediment denitrification was investigated through microcosm incubations with four different treatments: bare sediment core as control without restoration, sediment + E. nuttallii, sediment + E. nuttallii + INCB, and sediment + INCB. The sediments with E. nuttallii-INCB assemblage (E-INCB) had the highest denitrification rates among all the treatments, and the E-INCB increased the denitrification rate by 162% in the sediments. The presence of macrophytes yielded a penetration depth of O2 to more than 20 mm below the sediment–water interface (SWI), while the depth was only 4 mm in the sediments without macrophytes. The quantity of denitrifier in E-INCB sediments (within ~2 cm below the SWI) showed a significant increasing trend during one-month incubation, which was one order of magnitudes higher than that in the sediments without INCB. Macrophytes caused deeper O2 penetration and increased oxic-anoxic interface, which could stimulate the coupled nitrification–denitrification. The high denitrification rate of the E-INCB treatment may result from the increased inorganic nitrogen content in the vicinity of the SWI, causing more nitrate to reach the anoxic denitrification zone. The results showed that E-INCB assemblage could increase benthic N removal by stimulating denitrification via combined O2 penetration and enhanced microbial N cycling processes. E-INCB might be used as a potential restoration method for controlling fresh water system eutrophication. 相似文献
3.
Contribution from nitrogen fixation (acetylene reduction) to the nitrogen budget of Lake Tohopekaliga (Florida) 总被引:1,自引:0,他引:1
Nitrogen fixation, as assayed by the acetylene reduction technique, provided 44% of the input of nitrogen to a lake in central Florida (Lake Tohopekaliga) during 1984. Ninety-four percent of the lake total fixation was found in the water column and associated with Anabaena spp. The lake-wide average nitrogen fixation rate of 5.7 g N/m2-yr amounted to a mass loading of 497 metric tons of nitrogen for the year, and is one of the highest nitrogen fixation rates reported. 相似文献
4.
Nitrate reductase (NR) activity and nutrient (N, P) recycling in the ciliatesColpoda steinii andStylonychia sp. and two unidentified flagellates (I and II), isolated from Lake Kinneret, have been studied. When grown on a bacterium
also isolated from the lake, all species, except flagellate I, exhibited NR activity. Activity was higher in the presence
of nitrate than in its absence, and in the case ofC. steinii showed a dependence on initial ambient NO3 concentrations in the cultures. NR activity was inversely proportional to body size, suggesting that the larger protozoan
species have decreased specific metabolic rates. A net increase in ammonium concentrations and a decrease in orthophosphate
levels was observed, but both phenomena were much less sensitive to ambient NO3 concentrations than NR activity. Similar trends in NR activity and NH4 production were also observed whenC. steinii was grown on the picocyanobacteriumSynechococcus sp. Our results suggest that NH4 excretion is the outcome of N remineralization from the food supply but is also partially due to dissimilatory nitrate reduction.
These data imply that protozoa may have an important role in nutrient recycling in Lake Kinneret and that some species could
use NO3 respiration in anoxic regions of the water column.
Offprint requests to: O. Hadas. 相似文献
5.
Common nitrogen control of caesium uptake, caesium toxicity and ammonium (methylammonium) uptake in the cyanobacterium Nostoc muscorum 总被引:1,自引:0,他引:1
Abstract Studies were carried out to examine the role of ammonium transport activity in the control of caesium uptake and toxicity in Nostoc muscorum . The results showed a definite specific role of the ammonium-repressible/derepressible ammonium transport system of the cyanobacterium in caesium uptake, accumulation and toxicity. Furthermore, the results showed that N. muscorum can acquire resistance against diazotrophically-associated caesium toxicity when supplied with ammonium as a nitrogen source. In addition, alternatively, a mutant strain was Cs-resistant in the absence of any effect on NH4 + -transport, suggesting that Cs+ resistance may be determined at more than one cellular site. 相似文献
6.
M. Robert Hamersley Dagmar Woebken Bertram Boehrer Martin Schultze Gaute Lavik Marcel M.M. Kuypers 《Systematic and applied microbiology》2009
We studied microbial N2 production via anammox and denitrification in the anoxic water column of a restored mining pit lake in Germany over an annual cycle. We obtained high-resolution hydrochemical profiles using a continuous pumping sampler. Lake Rassnitzer is permanently stratified at ca. 29 m depth, entraining anoxic water below a saline density gradient. Mixed-layer nitrate concentrations averaged ca. 200 μmol L−1, but decreased to zero in the anoxic bottom waters. In contrast, ammonium was <5 μmol L−1 in the mixed layer but increased in the anoxic waters to ca. 600 μmol L−1 near the sediments. In January and October, 15N tracer measurements detected anammox activity (maximum 504 nmol N2 L−1 d−1 in 15NH4+-amended incubations), but no denitrification. In contrast, in May, N2 production was dominated by denitrification (maximum 74 nmol N2 L−1 d−1). Anammox activity in May was significantly lower than in October, as characterized by anammox rates (maximum 6 vs. 16 nmol N2 L−1 d−1 in incubations with 15NO3−), as well as relative and absolute anammox bacterial cell abundances (0.56% vs. 0.98% of all bacteria, and 2.7×104 vs. 5.2×104 anammox cells mL−1, respectively) (quantified by catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with anammox bacteria-specific probes). Anammox bacterial diversity was investigated with anammox bacteria-specific 16S rRNA gene clone libraries. The majority of anammox bacterial sequences were related to the widespread Candidatus Scalindua sorokinii/brodae cluster. However, we also found sequences related to Candidatus S. wagneri and Candidatus Brocadia fulgida, which suggests a high anammox bacterial diversity in this lake comparable with estuarine sediments. 相似文献
7.
《Harmful algae》2019
Cyanobacterial blooms are intensifying global ecological hazards. The fine structure and dynamics of bloom community are critical to understanding bloom development but little understood. Here, the questions whether dominant bloomers have high diversity and whether dominant OTUs (operational taxonomical units) compete with one another were addressed. 16S rRNA gene amplicons from an annual bloom at five locations in Harsha Lake (Ohio, USA) showed cyanobacteria were the dominant phylum, and co-existing major bacterial phyla included Proteobacteria, Bacteroidetes, Actinoacteria, and Verrucomicrobia. On the genus level, the initial dominance by Dolichospermum in June yielded to Planktothrix in July, which were replaced by Microcystis and Cylindrospermopsis in August throughout the bloom. Based on the number of verified unique OTUs (a within-genus biodiversity metric), dominant genera tended to have high within-genus diversity. For example, Dolichospermum had 57 unique OTUs, Planktothrix had 36, Microcystis had 12, and Cylindrospermopsis had 4 unique OTUs. Interestingly, these different OTUs showed different dynamics and association with other OTUs. First, no between-OTU competitions were observed during the bloom cycle, and dominant OTUs were abundant throughout the bloom. Such biodiversity of OTUs and their dynamics were verified in Microcystis aeruginosa with two microcystin synthetase genes (mcyA and mcyG): the relative abundance of both genes varied during the bloom based on quantitative PCR. Two Dolichospermum circinale OTUs and one P. rubescens OTU were most abundant and persistently present throughout the entire bloom. Second, these OTUs differed in the OTUs they were associated with. Third, these OTUs tended to have different levels of association with the environmental factors, even they belonged to the same genera. These findings suggest the structure and dynamics of a cyanobacterial bloom community is complex, with only few OTUs dominating the bloom. Thus, high-resolution molecular characterization will be necessary to understand bloom development. 相似文献
8.
The spatial and temporal distribution of planktonic, sediment-associated and epiphytic diatoms among 58 sites in Biscayne Bay, Florida was examined in order to identify diatom taxa indicative of different salinity and water quality conditions, geographic locations and habitat types. Assessments were made in contrasting wet and dry seasons in order to develop robust assessment models for salinity and water quality for this region. We found that diatom assemblages differed between nearshore and offshore locations, especially during the wet season when salinity and nutrient gradients were steepest. In the dry season, habitat structure was primary determinant of diatom assemblage composition. Among a suite of physicochemical variables, water depth and sediment total phosphorus (STP) were most strongly associated with diatom assemblage composition in the dry season, while salinity and water total phosphorus (TP) were more important in the wet season. We used indicator species analysis (ISA) to identify taxa that were most abundant and frequent at nearshore and offshore locations, in planktonic, epiphytic and benthic habitats and in contrasting salinity and water quality regimes. Because surface water concentrations of salts, total phosphorus, nitrogen (TN) and organic carbon (TOC) are partly controlled by water management in this region, diatom-based models were produced to infer these variables in modern and retrospective assessments of management-driven changes. Weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions produced reliable estimates of salinity, TP, TN and TOC from diatoms (r2 = 0.92, 0.77, 0.77 and 0.71, respectively). Because of their sensitivity to salinity, nutrient and TOC concentrations diatom assemblages should be useful in developing protective nutrient criteria for estuaries and coastal waters of Florida. 相似文献
9.
Phosphorus and nitrogen limitation of phytoplankton growth in eutrophic Lake Inba, Japan 总被引:2,自引:0,他引:2
Lake Inba is one of the most eutrophic lakes in Japan. In this study, field sampling and nutrient enrichment bioassays were conducted to determine the seasonal patterns of nutrient limitation for phytoplankton growth in this lake. Phytoplankton biomass increased significantly with the additions of phosphorus (P) on almost all sampling dates, indicating P limitation of phytoplankton growth from spring to autumn. However, nitrogen (N) limitation was also observed during summer (i.e., 19 August). On 10 August, a typhoon struck Lake Inba. After this event, dissolved inorganic nitrogen (DIN) and phosphorus concentrations increased, probably because of increased river discharge. At the same time, phytoplankton growth in the control treatment became relatively high, with the addition of neither P nor N stimulating the growth. However, 10 days after the typhoon, the phytoplankton growth rate in the control treatment decreased, with only the addition of N having a significant positive effect on phytoplankton growth. N limitation during summer is caused by the low concentrations of DIN, as well as changes in the N:P ratio due to allochthonous nutrient loads. These results indicate that a reduction of both P and N input is necessary to control phytoplankton blooms in Lake Inba. 相似文献
10.
《Harmful algae》2014
The West Florida Shelf (WFS) encompasses a range of environments from inshore estuarine to offshore oligotrophic waters, which are frequently the site of large and persistent blooms of the toxic dinoflagellate, Karenia brevis. The goals of this study were to characterize the nitrogen (N) nutrition of plankton across the range of environmental conditions on the WFS, to quantify the percentage of the plankton N demand met through in situ N regeneration, and to determine whether planktonic N nutrition changes when high concentrations of Karenia are present. In the fall of 2007, 2008, and 2009 we measured ambient nutrient concentrations and used stable isotope techniques to measure rates of primary production and uptake rates of inorganic N (ammonium, NH4+, and nitrate, NO3−), and organic N and carbon (C; urea and amino acids, AA) in estuarine, coastal, and offshore waters, as well as coastal sites with Karenia blooms present. In parallel, we also measured rates of in situ N regeneration – NH4+ regeneration, nitrification, and photoproduction of NH4+, nitrite and AA. Based on microscope observations, ancillary measurements, and previous monitoring history, Karenia blooms sampled represented three bloom stages – initiation in 2008, maintenance in 2007, and late maintenance/stationary phase in 2009. Nutrient concentrations were highest at estuarine sampling sites and lowest at offshore sites. Uptake of NH4+ and NO3− provided the largest contribution to N nutrition at all sites. At the non-Karenia sites, in situ rates of NH4+ regeneration and nitrification were generally sufficient to supply these substrates equal to the rates at which they were taken up. At Karenia sites, NO3− was the most important N substrate during the initiation phase, while NH4+ was the most important N form used during bloom maintenance and stationary phases. Rates of NH4+ regeneration were high but insufficient (85 ± 36% of uptake) to support the measured NH4+ uptake at all the Karenia sites although nitrification rates far exceeded uptake rates of NO3−. Taken together our results support the “no smoking gun” nutrient hypothesis that there is no single nutrient source or strategy that can explain Karenia's frequent dominance in the waters where it occurs. Consistent with other papers in this volume, our results indicate that Karenia can utilize an array of inorganic and organic N forms from a number of N sources. 相似文献
11.
Light conditions in laboratory scale enclosures (LSE) of shallow, eutrophic Lake Loosdrecht (The Netherlands), including a method for simulating a natural incident light course, are described. Total PAR (400–700 nm) and spectral irradiance distribution were measured at sestonic chlorophyll a and dry weight concentrations 100 mg m–3 and 16 g m–3, respectively. Phytoplankton was dominated by Oscillatoria spp. The euphotic depth (Z
eu) was 0.7–1.0 m. Shortly after filling the LSE with lake water, diffuse attenuation coefficients ranged from 14 m–1 for blue to 5 m–1 for red light. Around Z
eu, attenuation in the blue region was markedly lower and irradiance reflectance (R) continued to increase; these anomalies were caused by lateral incident light from the LSE's waterbath. Spectrophotometry indicated that absorption was mainly by particles, but dissolved humic substances (gilvin) were also important. The particles were likely to be dominated by detritus absorbing more blue relative to red light. Subsurface R in lake water in the LSE had a maximum around 705 nm and low values in the blue band, but was lower than that previously reported for measurements in situ. Wash-out of detritus, presumably both dissolved and particulate fractions, by flow-through with synthetic medium, greatly affected the spectral reflectance measured outside the LSE. The maximum value of R decreased from 0.022 to 0.009, and the peak shifted to 550 nm. 相似文献
12.
Shyam R. Morar Shaun P. Wilkinson 《Journal of experimental marine biology and ecology》2011,399(2):110-119
The sea anemone Anthopleura aureoradiata (Carlgren), which harbours symbiotic dinoflagellates (zooxanthellae), is abundant on mudflats and rocky shores around New Zealand. We measured the potential for particulate nitrogen uptake from sediment by A. aureoradiata and the subsequent consequences of this uptake on the nitrogen status of its zooxanthellae. Sediment was rinsed, labelled with (15NH4)2SO4, and provided to anemones at low (0.23 g ml− 1) and high (1.33 g ml− 1) sediment loads for 6 h. Both anemone tissues and zooxanthellae became enriched with 15N. Enrichment of anemone tissues was similar at both high and low sediment loads, but the zooxanthellae became more enriched at the lower load. This was presumably because the uptake of ammonium, arising from host catabolism, by zooxanthellae is light driven and because the anemones at the lower load were able to extend their tentacles into the light while those at the higher load were not. The influence of sediment uptake on the nitrogen status of the zooxanthellae was determined by measuring the extent to which 20 μM NH4+ enhanced the rate of zooxanthellar dark carbon fixation above that seen in filtered seawater (FSW) alone; the ammonium enhancement ratio (AER) was expressed as [dark NH4+ rate/dark FSW rate], where ‘rate’ refers to C fixation and a ratio of 1.0 or less indicates nitrogen sufficiency. When anemones were starved with and without rinsed sediment in nitrogen-free artificial seawater for 8 weeks, zooxanthellar nitrogen deficiency became apparent at 2-4 weeks and reached similar levels in both treatments (AER = ~ 2). In contrast, anemones fed 5 times per week for 8 weeks with Artemia nauplii were nitrogen sufficient (AER = 1.03). In the field, zooxanthellae from mudflat anemones were largely nitrogen sufficient (AER = 1.26), while nitrogen deficient zooxanthellae were present in anemones from a rocky intertidal site (AER = 2.93). These results suggest that, while there was evidence for particulate nitrogen uptake, dissolved inorganic nitrogen (especially ammonium) in interstitial pore water may be a more important source of nitrogen for the zooxanthellae in mudflat anemones, and may explain the marked difference in nitrogen status between the mudflat and rocky shore populations. 相似文献
13.
Determining trophic state in Lake Whatcom,Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation 总被引:4,自引:1,他引:4
We evaluated an eleven year data set to assess trophic state and nutrient limitation in Lake Whatcom, an oligotrophic, soft water, chain lake located in the Puget Sound lowlands of Washington (U.S.A.). Although total phosphorus (TP) and soluble reactive phosphate (SRP) concentrations were relatively low throughout the lake, there were significant differences between the northern basin (Site 1) and the other sampling sites (Sites 2–4). Nonparametric correlation coefficients (Kendall's ) were highest between chlorophyll (CHL), Secchi depth (SD), total nitrogen (TN), and dissolved inorganic nitrogen (DIN). Late summer algal biomass correlated best with DIN and TP. Trophic State Indices based on TP, TN, CHL and SD revealed that although algal growth was most likely phosphorus limited throughout the year, the northern basin of the lake may have developed nitrogen co-limitation during late summer and fall. During this period, N/P ratios were often less than 20, and in 1998 the epilimnetic DIN concentrations dropped below 20 g l–1 while DIN/TP ratios fell below 4. Reviews of the literature suggest that while co-limitation by phosphorus and nitrogen is fairly common in unproductive lakes, the patterns seen in Lake Whatcom were more similar to those reported for eutrophic lakes experiencing secondary nitrogen limitation resulting from excess phosphorus loading. 相似文献
14.
Phytoplankton uptake of ammonium, nitrate and urea in the Neuse River Estuary, NC, USA 总被引:1,自引:0,他引:1
Uptake rates of ammonium, nitrate and urea were measured during the spring, summer and autumn (2001) in the eutrophic, nitrogen (N) limited Neuse River Estuary (NRE), North Carolina, USA. Ammonium was the dominant form of N taken up during the study, contributing approximately half of the total measured N uptake throughout the estuary. Nitrate uptake declined significantly with distance downstream comprising 33% of the total uptake in the upper estuary but only 11 and 16% in the middle and lower estuary, respectively. Urea uptake contributed least to the total pool in the upper estuary (16%), but increased in importance in the middle and lower estuary, comprising 45 and 37% of the total N taken up, respectively. The importance of regenerated N for fuelling phytoplankton productivity in the mesohaline sections of the NRE is demonstrated. The contribution of urea to the regenerated N pool suggests that internal regeneration of dissolved organic N may support a large proportion of the phytoplankton primary production and biomass accumulation in the middle and lower NRE. These results suggest that N-budgets based on dissolved inorganic N uptake rates alone will seriously under estimate phytoplankton N uptake. 相似文献
15.
Vidal Montserrat Morguí Josep-Anton Latasa Mikel Romero Javier Camp Jordi 《Hydrobiologia》1997,350(1-3):169-178
The seasonal variability of sediment–water ammonium flux andoxygen uptake was studied in an estuarine bay (Alfacs Bay, Ebro Delta, NWMediterranean) influenced by temporal freshwater discharges. Three stationswith different organic loading were sampled. The relationships of benthicfluxes to bottom water (temperature, dissolved oxygen, ammonium, nitrateplus nitrite) and to sediment (porosity, chlorophyll a derivative pigments,organic carbon and nitrogen) variables were examined. Oxygen uptake rangedfrom 0.3 to 2.5 mmol m–2 h–1 and ammoniumrelease ranged from 6 to 230 µmol m–2 h–1.The lowest value was recorded at the station furthest from the freshwaterinputs, and the highest was at the littoral station nearest the freshwaterdischarge channels (for oxygen uptake) and at the deep station at the saltwedge front (for ammonium flux). Water temperature and the concentration ofchlorophyll a derivative pigments on the surface sediment were revealed asthe main variables to be taken into account to explain the variabilityfound. Changes in fluxes reflecting temperature changes were found at thestation furthest from the freshwater inputs, while at the other, fluxvariability was found to be related to the cycle of functioning offreshwater discharge channels. The different patterns of variability arediscussed in relation to the dynamics of the estuary and to the mainfeatures of benthic nitrogen cycling. 相似文献
16.
17.
The Bay of Quinte receives drainage from several large river systems, including the Moira River which carried sediment from mines into the Bay from the 1880s to the 1960s. We are investigating possible metal contamination of submerged weed beds and marsh biota which may contribute to the low diversity and biomass of macrophyte beds and Typha marshes in the Bay. In 1987, sediment, macrophytes and snails were sampled in wetlands close to the Moira River and at Hay Bay (part of the Bay of Quinte presumably unaffected by mine effluents) located 20 km from the Moira. Some element concentrations in sediment and biota were determined by neutron activation analysis (NAA) including Al, As, Br, Ca, Co, Cl, Cr, Cs, Fe, Hf, K, La, Na, Mg, Sb, Sc, Rb, Ta, Th, Ti, U, V and Zn. Other elements were analysed by acid dissolution and atomic absorption spectrophotometry (AAS) including Ag, As, Cu, Hg, Ni, Pb, and Zn. Levels of As in sediments and plants were higher close to the Moira River, whereas Cu and Ni showed the opposite pattern in sediments. The usefulness of species as bioassays differed: Stagnicola elodes Say accumulated significantly higher levels of Cu (35 vs 18 ppm) and V (l. l vs 0.5 ppm) than Planorbella trivolvis Say collected from the same sites. The macrophyte, Myriophyllum spicatum L. acted as an accumulator of Pb (up to 9.6 ppm), whereas Pb in Vallisneria americana Michx. at the same sites was undetectable. 相似文献
18.
Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration 总被引:6,自引:2,他引:4
José R. Romero Iphigenia Kagalou Jörg Imberger Dimitra Hela Melina Kotti Aristides Bartzokas Triantafyllos Albanis Nicholaos Evmirides Spiros Karkabounas Joannis Papagiannis Amalia Bithava 《Hydrobiologia》2002,474(1-3):91-105
Lake Pamvotis is a moderately sized (22 km2) shallow (z
avg=4 m) lake with a polymictic stratification regime located in northwest Greece. The lake has undergone cultural eutrophication over the past 40 years and is currently eutrophic (annual averages of FRP=0.07 mg P l-1, TP=0.11 mg P l-1, NH4
+=0.25 mg N l-1, NO3
–=0.56 mg N l-1). FRP and NH4
+ levels are correlated to external loading from streams during the winter and spring, and to internal loading during multi-day periods of summer stratification. Algal blooms occurred in summer (July–August green algae, August–September blue-green algae), autumn (October blue-green algae and diatoms), and winter (February diatoms), but not in the spring (March–June). The phytoplankton underwent brief periods of N- and P-limitation, though persistent low transparency (secchi depth of 60–80 cm) also suggests periods of light limitation. Rotifers counts were highest from mid-summer to early autumn whereas copepods were high in the spring and cladocerans were low in the summer. Removal of industrial and sewage point sources a decade ago resulted in a decrease in FRP. A phosphorus mass balance identified further reductions in external loading from the predominately agricultural catchment will decrease FRP levels further. The commercial fishery and lake hatchery also provides opportunities to control algal biomass through biomanipulation measures. 相似文献
19.
Water column and sediment nitrogen and phosphorus distribution patterns in the Florida Keys,USA 总被引:4,自引:0,他引:4
Measurements of the distribution patterns of nutrients (ammonium, nitrate, orthophosphate, total N and total P) and chlorophyll concentrations were conducted under an interdisciplinary program known as SEAKEYS, initiated because of concern that anthropogenic nutrients may be impacting Florida coral reefs. Samples were collected along transects that extended from passes or canals to 0.5 km offshore of the outermost reefs. Seven of the transects were either in the Biscayne National Park (BNP) and Key Largo (upper keys) or Seven Mile Bridge/Looe Key (upper part of lower keys) areas, which have the best present-day reef development; the two in the middle keys off Long Key were in an area of minimal reef development where passes allow estuarine Florida Bay water to flow onto the Florida reef platform. Off the upper keys, water column concentrations of N and chl a were elevated near marinas and canals (1 M NO3, 1 g/l chl a), but returned to oligotrophic levels (e.g., chl a 0.25 g/l; NO3 0.25 M; NH4 0.10 M) within 0.5 km of shore. Phosphorus concentrations, however, were often higher offshore 0.2 M PO4). Sediment interstitial nutrient concentrations decreased from inshore to the offshore reef areas (e.g., 100 M NH4 inshore to 50 M NH4 offshore) and were comparable to those of some presumably pristine coastal and reef carbonate sediments. Sediment bulk N was higher nearshore and decreased steeply offshore ( 60 g-at N/gm sediment to 20 g-at N/gm sediment, respectively); bulk P concentrations ( 6 g- at P/gm sediment) varied little or exhibited the reverse pattern. Sediment N:P ratios were consistently lower offshore (1–10 vs. 20–40 nearshore). Higher offshore P concentrations are attributed to periodic upwelling along the shelf edge. In the middle keys water column nutrients and chl a concentrations were both higher than those in the upper keys, and there was less of an inshore-offshore decrease than that noted in the upper keys. Sediment nutrients were higher also, and nearshore and offshore areas did not differ. Water column and sediment nutrient concentrations and distribution patterns in the upper part of the lower keys were most similar to those measured in the upper keys. Overall, the present data do not support the contention that reef areas in the upper keys are accumulating elevated loads of land-derived nutrients via surface water flow, but does document moderately elevated nutrient and chl a levels in many developed nearshore areas. Most of the anthropogenic and natural nutrients entering the coastal waters from shore appear to be taken up by near shore algal and seagrass communities before they reach patch reef areas. Further work is needed to determine whether nutrient-enriched ground waters reach the reefs, however these would be expected to cause an enrichment of reef sediments, which was not observed. 相似文献
20.
Gérard Sarazin Jean-Fran cois Gaillard Laurence Philippe Christophe Rabouille 《Hydrobiologia》1995,315(2):95-118
The chemical composition of the pore water from the sediment of a eutrophic lake is dominated by high concentrations of total dissolved CO2 (up to 12 mM), reduced soluble iron (up to 2 mM) and dissolved silica (up to 1 mM). The pH lies within the range of 6.70 ± 0.02; this reflects that the pore water is efficiently buffered by the CO2 acid/base system. This composition is directly related to the main diagenetic reactions which drive the organic matter mineralization i.e. methanogenesis and ferric oxides reduction. Other geochemical processes are of minor importance. A stoichiometric model based on these main reactions allow us: (i) to define a general formula for the organic matter which is close to Redfield's one for the C:N ratio, while the C:P ratio is much higher owing to a probable adsorption of phosphorus onto reactive surfaces of the solid and due to heterotrophic bacterial uptake; (ii) to calculate a global first order kinetic constant which drives the organo-polymers breakdown. Due to the strong influence on the trophic status of the lake caused by an excess of phosphate, special attention is devoted to this species. We show that the sediment-water interface is a source of dissolved phosphate when the hypolimnion is anoxic between May and November. This contribution represents about 17% of the river input and should be taken into account in any attempt toward lake restoration. 相似文献