首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The 70-kilodalton heat shock protein family is composed of both environmentally inducible (Hsp) and constitutively expressed (Hsc) family members. While the role of the constitutively expressed stress proteins in thermotolerance is largely unknown, de novo expression stress proteins in response to elevated temperatures has been associated with increased thermotolerance in many cell lines, developing embryos and adult organisms. Distinct, hemiclonal hybrids between the livebearing fish species Poeciliopsis monacha and P. lucida varied in their abilities to survive temperature stress, with survival being greatest when rates of temperature increase to 40°C were slowest and when P. monacha genomes were combined with a sympatric P. lucida genome. Quantification of Hsp70 under heat shock conditions and Hsc70 under normal physiological conditions indicated that variation in survival among hemiclones was best explained by the combined effects of these two proteins. Similar complex interactions between maternal and paternal genomes and rate of temperature increase were found to underline patterns of survival, Hsp70 accumulation and Hsc70 abundance. These data suggest that the relationship between Hsps and thermotolerance is more intricate than previously thought and that Hsps contribute to thermal adaptation in these fishes through genetic interactions specific to particular environments.  相似文献   

2.
The principle inducible heat-shock protein of Drosophila melanogaster, Hsp70, contributes to thermotolerance throughout the entire life cycle of the species but may also reduce fitness in some life stages. In principle, selection might maximize the benefits of Hsp70 expression relative to its costs by adjusting the magnitude of Hsp70 expression for each life-cycle stage independently. Therefore we examined whether the magnitude of Hsp70 expression varied during the life cycle and the relationship of this variation to several life-history traits. For 28 isofemale lines derived from a single natural population, estimates of heritable variation in Hsp70 expression ranged between 0.25 and 0.49, and the association among variation in first- and third-instar larvae and in adults correlated highly. Thus, Hsp70 expression is genetically coupled at these developmental stages. A line engineered with extra copies of the hsp70 gene produced more Hsp70 and survived heat shock much better than did a control strain. Among natural lines, Hsp70 expression was only weakly related to tolerance of heat shock and to larva-to-adult survival and developmental time at permissive temperatures. Additionally, lines with high adult survival developed slowly as larvae, which is a possible trade-off. These and other findings suggest that trade-offs may maintain quantitative variation both in heat-shock protein expression and in life-history traits that associate with thermotolerance.  相似文献   

3.
Although Hsp70, the principal inducible heat-shock protein of Drosophila melanogaster, has received intense scrutiny in laboratory strains, its variation within natural populations and the consequences of such variation for thermotolerance are unknown. We have characterized variation in first-instar larvae of 20 isofemale lines isolated from a single natural population of D. melanogaster, in which larvae are prone to thermal stress in nature. Hsp70 expression varied more than twofold among lines after induction by exposure to 36°C for one hour, with an estimated proportion of the variation due to genetic differences of 0.24 ± 0.08. Thermotolerance with and without a Hsp70-inducing pretreatment, survival at 25°C, and developmental time also varied significantly. As expected, expression of Hsp70 correlated positively with larval thermotolerance. By contrast, lines in which larval survival was high in the absence of heat stress showed lower than average Hsp70 expression and lower than average inducible thermotolerance. This conditional performance suggests an evolutionary trade-off between thermotolerance and the ability to produce higher concentrations of Hsp70, and survival in a benign environment.  相似文献   

4.
The migratory locust Locusta migratoria L., which is widely distributed throughout the world, exhibits within- and between-population variation in cold tolerance. To understand physiological adaptation in populations, we studied the genetic basis of thermotolerance in Hainan (tropical) and Liaoning (temperate) populations and measured expression of Hsp70 and Hsp90 mRNA in both populations at low (0 degrees C) and high temperatures (40 degrees C). Phenotypic variation of thermotolerance is heritable. Heritable characteristics differed among different stages of locust egg development, as well as among different measures of thermotolerance. Nuclear genetic factors, rather than cytoplasmic factors, contribute to differences in cold tolerance between the tropical and temperate populations of the migratory locust; for heat tolerance, maternal effects were involved in three stages of egg development. Expression of Hsp90 mRNA was induced in temperate population after heat shock (40 degrees C x 12h), whereas expression of Hsp70 and 90 was induced in tropical population after cold shock (0 degrees C x 12h). We suggest that thermotolerance of locust eggs has a complex genetic basis and heat shock proteins may be involved in differences of thermotolerance between locust populations.  相似文献   

5.
The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.  相似文献   

6.
Across populations of Drosophila melanogaster along the Australian eastern coastline latitudinal clines occur in both heat-knockdown tolerance and hardened heat-knockdown tolerance – low latitude tropical populations being more tolerant. A latitudinal cline also occurs for rates of total protein synthesis following a mild heat stress, with tropical populations having higher rates. Since the control of protein synthesis following heat stress is an important component of the cellular heat-shock response, we hypothesised that the higher rates of synthesis that follow a heat stimulus lead to higher knockdown tolerance and underpins the cline. However, levels of heat-stimulated total protein synthesis have been negatively related to heat-hardening capacity, a somewhat conflicting result. Here we examine the relationship between these physiological and adaptive traits in a set of 40 family lines derived from a hybrid laboratory population established by crossing populations from either end of the latitudinal transect. Among these lines high levels of heat-stimulated total protein synthesis were associated with both low basal and low heat-hardened adult knockdown time, confirming the importance of a negative relationship between protein synthesis and thermal tolerance. This result, when considered along with the directions of the latitudinal clines in protein synthesis and tolerance, suggests that variation in rates of heat-stimulated total protein synthesis is not a factor contributing to the latitudinal cline in heat tolerance. Given the robustness of this negative relationship we discuss possible explanations and future experiments to elucidate how the cellular heat stress response might facilitate increased knockdown tolerance.  相似文献   

7.
Gong WJ  Golic KG 《Genetics》2006,172(1):275-286
The heat-shock response is a programmed change in gene expression carried out by cells in response to environmental stress, such as heat. This response is universal and is characterized by the synthesis of a small group of conserved protein chaperones. In Drosophila melanogaster the Hsp70 chaperone dominates the profile of protein synthesis during the heat-shock response. We recently generated precise deletion alleles of the Hsp70 genes of D. melanogaster and have used those alleles to characterize the phenotypes of Hsp70-deficient flies. Flies with Hsp70 deletions have reduced thermotolerance. We find that Hsp70 is essential to survive a severe heat shock, but is not required to survive a milder heat shock, indicating that a significant degree of thermotolerance remains in the absence of Hsp70. However, flies without Hsp70 have a lengthened heat-shock response and an extended developmental delay after a non-lethal heat shock, indicating Hsp70 has an important role in recovery from stress, even at lower temperatures. Lack of Hsp70 also confers enhanced sensitivity to a temperature-sensitive lethal mutation and to the neurodegenerative effects produced by expression of a human polyglutamine disease protein.  相似文献   

8.
The influence of geldanamycin (GA), a specific inhibitor of heat-shock protein Hsp90, on the synthesis of Hsp70 and Hsp90 and thermotolerance of Arabidopsis thaliana seedlings has been studied. Incubation of seedlings with GA under normal conditions induced synthesis of these stress proteins. Treatment of seeds with the Hsp90 inhibitor resulted in elevated constitutive levels of Hsp70 and Hsp90 in seedlings, as well as increased induction of their synthesis under heat shock. The GA effect increased with its concentration. Hsp up-regulation promoted thermotolerance of seedlings. The findings suggest autoregulation of heatshock protein synthesis and regulation of plant tolerance by Hsp90.  相似文献   

9.
To examine how the duration of laboratory domestication may affect Drosophila stocks used in studies of thermotolerance, we measured expression of the inducible heat‐shock protein Hsp70 and survival after heat shock in D. melanogaster strains recently collected from nature and maintained in laboratory culture for up to 50 or more generations. After an initial increase in both Hsp70 expression and thermotolerance immediately after transfer to laboratory medium, both traits remained fairly constant over time and variation among strains persisted through laboratory domestication. Furthermore, variation in heat tolerance and Hsp70 expression did not correlate with the length of time populations evolved in the laboratory. Therefore, while environmental variation likely contributed most to early shifts in strain tolerance and Hsp70 expression, other population parameters, for example genetic drift, inbreeding, and selection likely affected these traits little. As long as populations are maintained with large numbers of individuals, the culture of insects in the laboratory may have little effect on the tolerance of different strains to thermal stress.  相似文献   

10.

Background  

The heat shock protein Hsp70 promotes inducible thermotolerance in nearly every organism examined to date. Hsp70 interacts with a network of other stress-response proteins, and dissecting the relative roles of these interactions in causing thermotolerance remains difficult. Here we examine the effect of Hsp70 gene copy number modification on thermotolerance and the expression of multiple stress-response genes in Drosophila melanogaster, to determine which genes may represent mechanisms of stress tolerance independent of Hsp70.  相似文献   

11.
The elevation of Hsp104 (heat shock protein) content under heat stress plays a key role in the development of thermotolerance in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress and in the stationary growth phase. The loss of mitochondrial DNA (petite mutation) was shown to inhibit the induction of Hsp104 synthesis under heat stress (39°C) and during the transition to the stationary growth phase. Also, the petite mutation suppressed the increase in activity of antioxidant enzymes in the stationary phase, which accompanied by decrease in thermotolerance. At the same time, mutation inhibited production of reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression of yeast nuclear genes upon upon entry into the stationary growth phase.  相似文献   

12.
Preczewski  P.J.  Heckathorn  S.A.  Downs  C.A.  Coleman  J.S. 《Photosynthetica》2000,38(1):127-134
We recently showed that the chloroplast small heat-shock protein (herein referred to as chlp Hsp24) protects photosystem 2 (PS2) during heat stress, and phenotypic variation in production of chlp Hsp24 is positively related to PS2 thermotolerance. However, the importance of chlp Hsp24 or other Hsps to other aspects of photosynthesis and overall photosynthetic thermotolerance is unknown. To begin investigating this and the importance of genetic variation in Hsp production to photosynthetic thermotolerance, the production of several prominent Hsps and photosynthetic thermotolerance were quantified in nine genotypes of Lycopersicon, and then the relationships between thermotolerance of net photosynthetic rate (P N) and production of each Hsp were examined. The nine genotypes exhibited wide variation in P N thermotolerance and production of each of the Hsps examined (chlp Hsp70, Hsp60, and Hsp24, and cytosol Hsp70). No statistically significant relationship was observed between production of chlp Hsp70 and P N thermotolerance, and only a weak positive relationship between cytosolic Hsp70 and P N was detected. However, significant positive relationships were observed between production of chlp Hsp24 and Hsp60 and P N thermotolerance. Hence natural variation in production of chlp Hsp24 and Hsp60 is important in determining variation in photosynthetic thermotolerance. This is perhaps the first evidence that chlp Hsp60 is involved in photosynthetic thermotolerance, and these in vivo results are consistent with previous in vitro results showing that chlp Hsp24 protects PS2 during heat stress.  相似文献   

13.
14.
It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36–89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at ?70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5–2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.  相似文献   

15.
To test whether expression of the inducible heat-shock protein Hsp70 increases under selection for inducible thermotolerance in Drosophila melanogaster, we performed artificial selection on replicate sets of Drosophila lines founded from two independent populations. Selection entailed pretreatment at 36 degrees C to induce thermotolerance and Hsp70 expression, followed by a more severe heat shock, whose temperature varied between sexes and among generations to achieve 50% mortality. Inducible thermotolerance increased slowly and continuously in selected lines and was 37%-50% greater than in controls after 10-11 generations. Lines founded from the two populations differed in their coevolution of Hsp70 expression. In lines founded from Evolution Canyon, Israel, Hsp70 level initially increased and thereafter was unchanged; replicate lines exhibited two temporal patterns of response to selection. In lines founded from Australia, Hsp70 levels increased throughout selection. In both cases, however, the increase in Hsp70 level averaged only 15%, suggesting that pleiotropy in Hsp70 function constrains evolutionary increase in its expression.  相似文献   

16.
《The Journal of cell biology》1996,134(6):1375-1386
Hsp78, a member of the family of Clp/Hsp100 proteins, exerts chaperone functions in mitochondria of S. cerevisiae which overlap with those of mitochondrial Hsp70. In the present study, the role of Hsp78 under extreme stress was analyzed. Whereas deletion of HSP78 does not affect cell growth at temperatures up to 39 decrees C and cellular thermotolerance at 50 degrees C, Hsp78 is crucial for maintenance of respiratory competence and for mitochondrial genome integrity under severe temperature stress (mitochondrial thermotolerance). Mitochondrial protein synthesis is identified as a thermosensitive process. Reactivation of mitochondrial protein synthesis after heat stress depends on the presence of Hsp78, though Hsp78 does not confer protection against heat-inactivation to this process. Hsp78 appears to act in concert with other mitochondrial chaperone proteins since a conditioning pretreatment of the cells to induce the cellular heat shock response is required to maintain mitochondrial functions under severe temperature stress. When expressed in the cytosol, Hsp78 can substitute for the homologous heat shock protein Hsp104 in mediating cellular thermotolerance, suggesting a conserved mode of action of the two proteins. Thus, proteins of the Clp/Hsp100-family located in the cytosol and within mitochondria confer compartment-specific protection against heat damage to the cell.  相似文献   

17.
The patterns of heat-induced synthesis (37 degrees C to 45 degrees C) of heat shock proteins (Hsps) in different tissues of grasshoppers and cockroaches from natural populations and in laboratory-reared gram-pest (Heliothis armigera) were examined by 35S-methionine labeling and sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorography. Whereas 45 degrees C was lethal in most cases, optimal induction of Hsp synthesis was seen between 37 degrees C and 42 degrees C. The ongoing protein synthesis was not much affected at these temperatures, except in the tissues of adult H. armigera exposed to 42 degrees C. The profiles of the Hsps induced in the tissues of the insects, however, were different. From the relative abundance of the synthesis of 70-kDa (Hsp70) and 64-kDa (Hsp64) polypeptides, three categories of heat shock response were identified: (1) induction of abundant Hsp70 but little Hsp64 (malpighian tubules, male accessory glands, and ovaries of adult grasshoppers), (2) abundant Hsp64 but little Hsp70 (testes of adult grasshoppers, testes and malpighian tubules of adult cockroaches, and testes, malpighian tubules, and fat bodies of H. armigera larvae), and (3) induction of both Hsp70 and Hsp64 in more or less equal abundance (ovaries of adult cockroaches, salivary glands of H. armigera larvae, and malpighian tubules, male accessory glands, testes, and ovaries of adult H. armigera). Cockroaches collected from storerooms showed detectable synthesis of Hsp64 and/or Hsp70 only after heat shock, but those collected from drains showed detectable synthesis of both Hsp70 and Hsp64 in different tissues without heat stress. Western blotting showed that the 64-kDa polypeptide in these insects is a member of the Hsp60 family. Grasshopper testes, which synthesized negligible Hsp70 but abundant Hsp64 after heat shock, developed thermotolerance. Thus, heat shock response is modulated by developmental and environmental factors in different tissues of insects.  相似文献   

18.
19.
Duncan RF 《The FEBS journal》2005,272(20):5244-5256
The induction of the heat shock response as well as its termination is autoregulated by heat shock protein activities. In this study we have investigated whether Hsp90 functional protein levels influence the characteristics and duration of the heat shock response. Treatment of cells with several benzoquinone ansamycin inhibitors of Hsp90 (geldanamycin, herbimycin A) activated a heat shock response in the absence of heat shock, as reported previously. Pretreatment of cells with the Hsp90 inhibitors significantly delayed the rate of restoration of normal protein synthesis following a brief heat shock. Concurrently, the rate of Hsp synthesis and accumulation was substantially increased and prolonged. The cessation of heat shock protein synthesis did not occur until the levels of Hsp70 were substantially elevated relative to its standard threshold for autoregulation. The elevated levels of HSPS 22-28 (the small HSPS) and Hsp70 are not able to promote thermotolerance when Hsp90 activity is repressed by ansamycins; rather a suppression of thermotolerance is observed. These results suggest that a multicomponent protein chaperone complex involving both Hsp90 and Hsp70 signals the cessation of heat shock protein synthesis, the restoration of normal translation, and likely the establishment of thermotolerance. Impaired function of either component is sufficient to alter the heat shock response.  相似文献   

20.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号