共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanisms underlying the cardiovascular responses to intrathecal vasopressin administration in rats 总被引:2,自引:0,他引:2
Vasopressinergic pathways within the spinal cord have been implicated in the control of cardiovascular function. This study was undertaken to determine the mechanisms whereby intrathecally administered arginine vasopressin (AVP) increases blood pressure and heart rate in anesthetized rats. The cardiovascular responses to intrathecal AVP administration were significantly attenuated after intravenous administration of the ganglionic blocking agent, chlorisondamine chloride, as were the pressor responses following alpha-adrenergic receptor blockade with phentolamine and the heart rate responses following beta-receptor blockade with propranolol. Intrathecal administration of the V1 vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP completely blocked the cardiovascular responses to intrathecal AVP injections, but did not significantly alter the responses to intrathecal substance P injections. There was no evidence for the involvement of the renin-angiotensin system in the pressor responses to intrathecal AVP, as (i) an angiotensin II receptor blocking agent, [Sar1, Val5, Ala8]angiotensin, failed to significantly alter the responses to intrathecal AVP, and (ii) plasma renin levels did not change following administration of the peptide. Intrathecal injections of [3H]AVP suggest that only small amounts of the peptide may cross into the plasma during the time in which the cardiovascular variables are changing. These data provide evidence that intrathecally administered AVP discretely activates the sympathetic outflow to the heart and vasculature, and confirm the neurally mediated nature of the response. 相似文献
2.
Precise regulation of the signaling range of secreted molecules is essential for proper pattern formation during development. The Nodal family of TGF-beta proteins has been shown to function as both short- and long-range signals. But the underlying mechanisms remain elusive. In this study, we investigated the regulation of the signaling range of zebrafish Nodal proteins Cyclops and Squint, which are short- and long-range signals, respectively. We show that (1) the stability of Cyclops and Squint correlates with the activity range but increasing the stability of the short-range Cyclops does not increase its signaling range; (2) structural differences in the N-terminus region of the mature peptides of Cyclops and Squint determine their differences in the signaling range and swapping the N-terminus region of the Squint mature ligand into that of Cyclops makes the latter function at a distance. 相似文献
3.
Ligand concentration is a driver of divergent signaling and pleiotropic cellular responses to FGF 总被引:5,自引:0,他引:5
Garcia-Maya M Anderson AA Kendal CE Kenny AV Edwards-Ingram LC Holladay A Saffell JL 《Journal of cellular physiology》2006,206(2):386-393
Fibroblast growth factors (FGFs) are soluble ligands important for embryonic patterning, limb and brain development, and stem cell proliferation. They activate specific receptors (FGFR) to elicit changes in gene expression and cellular responses such as proliferation, differentiation, and survival, but the extent to which these pleiotropic responses are driven by FGF concentration gradients has not been systematically addressed. Here, we show that a single cell type exhibits divergent, even opposing, responses to a single FGF dependent on the exposure concentration, and that this is controlled by differential signaling with specific negative feedback inhibition. Low concentrations of FGF2 stimulate survival and differentiation but actively inhibit proliferation while intermediate concentrations stimulate proliferation in the presence of serum but apoptosis in its absence. Intriguingly, high concentrations reverse the proliferation and apoptosis effects, and mirror the low concentration effects: inhibition of proliferation and stimulation of survival and differentiation. By screening for activation of sampled signaling intermediates across the FGF2 concentration range in fibroblasts, we show that the peak in proliferation and apoptosis correlates with abrupt activation of FRS-2 and Erk that is specifically down-regulated by high concentrations of FGF2, a pattern that contrasts with an incremental increase in activation of p38 MAP kinase and the FGFR itself, across the FGF2 concentration range. Whilst proliferation stimulated by FGF2 was dependent on p38 MAP kinase, apoptosis stimulated by proliferative concentrations of FGF2 under serum-free conditions was, in contrast, dependent on Erk MAP kinase. These findings indicate that FGF exposure concentration precisely controls intracellular signaling and cellular responses to the growth factor, and have important implications for understanding how FGF gradients influence cell proliferation, survival, and differentiation during processes such as limb development. 相似文献
4.
5.
Stear MJ Strain S Bishop SC 《International journal for parasitology》1999,29(1):51-6; discussion 73-5
Lambs show considerable genetic variation in faecal egg count following natural, predominantly Ostertagia circumcinta infection. This genetic variation is acquired and not innate. Worm length is positively associated with worm fecundity. The genetic variation in faecal egg count is a consequence of genetic variation in worm length and hence worm fecundity, and not of genetic variation in worm burdens. In contrast to lambs, mature sheep may be able to regulate both fecundity and worm numbers. In lambs, three factors account for the majority of the variation in worm length: the strength of the local IgA response against fourth-stage larvae, the specificity of this response against four molecules in particular, and the density-dependent influence of worm number. 相似文献
6.
Josiane W. Tessmann Murilo R. Rocha Jose A. Morgado-Díaz 《Journal of cellular biochemistry》2023,124(1):31-45
Radiotherapy is one of the most common modalities for the treatment of a wide range of tumors, including colorectal cancer (CRC); however, radioresistance of cancer cells remains a major limitation for this treatment. Following radiotherapy, the activities of various cellular mechanisms and cell signaling pathways are altered, resulting in the development of radioresistance, which leads to therapeutic failure and poor prognosis in patients with cancer. Furthermore, even though several inhibitors have been developed to target tumor resistance, these molecules can induce side effects in nontumor cells due to low specificity and efficiency. However, the role of these mechanisms in CRC has not been extensively studied. This review discusses recent studies regarding the relationship between radioresistance and the alterations in a series of cellular mechanisms and cell signaling pathways that lead to therapeutic failure and tumor recurrence. Our review also presents recent advances in the in vitro/in vivo study models aimed at investigating the radioresistance mechanism in CRC. Furthermore, it provides a relevant biochemical basis in theory, which can be useful to improve radiotherapy sensitivity and prolong patient survival. 相似文献
7.
8.
Tom T. Chen Alfonso Luque Sunyoung Lee Sean M. Anderson Tatiana Segura M. Luisa Iruela-Arispe 《The Journal of cell biology》2010,188(4):595-609
VEGF can be secreted in multiple isoforms with variable affinity for extracellular proteins and different abilities to induce vascular morphogenesis, but the molecular mechanisms behind these effects remain unclear. Here, we show molecular distinctions between signaling initiated from soluble versus matrix-bound VEGF, which mediates a sustained level of VEGFR2 internalization and clustering. Exposure of endothelial cells to matrix-bound VEGF elicits prolonged activation of VEGFR2 with differential phosphorylation of Y1214, and extended activation kinetics of p38. These events require association of VEGFR2 with β1 integrins. Matrix-bound VEGF also promotes reciprocal responses on β1 integrin by inducing its association with focal adhesions; a response that is absent upon exposure to soluble VEGF. Inactivation of β1 integrin blocks the prolonged phosphorylation of Y1214 and consequent activation of p38. Combined, these results indicate that when in the context of extracellular matrix, activation of VEGFR2 is distinct from that of soluble VEGF in terms of recruitment of receptor partners, phosphorylation kinetics, and activation of downstream effectors. 相似文献
9.
10.
Mechanisms underlying insect chill-coma 总被引:1,自引:0,他引:1
At their critical thermal minimum (CTmin) insects enter chill-coma, a reversible state where neuromuscular transmission and movement cease. The physiological mechanisms responsible for the insect CTmin remain poorly understood despite the regular use of chill-coma onset and recovery as a means to assess evolved or acquired variation in low temperature tolerance. In this review, we summarize the use of chill-coma as a metric of thermal tolerance to date, and synthesise current knowledge on the nature and plasticity of lower thermal limits to present probable physiological mechanisms of cold-induced failure. Chill-coma is likely to be driven by an inability to maintain ionic homeostasis through the effects of temperature on ion-motive ATPases, ion channel gating mechanisms, and/or the lipid membrane, leading to a loss of nerve and muscle excitability. 相似文献
11.
12.
The prevailing concept has been that an FGF induces epithelial-to-fiber differentiation in the mammalian lens, whereas chick lens cells are unresponsive to FGF and are instead induced to differentiate by IGF/insulin-type factors. We show here that when treated for periods in excess of those used in previous investigations (>5 h), purified recombinant FGFs stimulate proliferation of primary cultures of embryonic chick lens epithelial cells and (at higher concentrations) expression of the fiber differentiation markers delta-crystallin and CP49. Surprisingly, upregulation of proliferation and delta-crystallin synthesis by FGF does not require activation of ERK kinases. ERK function is, however, essential for stimulation of delta-crystallin expression in response to insulin or IGF-1. Vitreous humor, the presumptive source of differentiation-promoting activity in vivo, contains a factor capable of diffusing out of the vitreous body and inducing delta-crystallin and CP49 expression in chick lens cultures. This factor binds heparin with high affinity and increases delta-crystallin expression in an ERK-insensitive manner, properties consistent with an FGF but not insulin or IGF. Our findings indicate that differentiation in the chick lens is likely to be mediated by an FGF and provide the first insights into the role of the ERK pathway in growth factor-induced signal transduction in the lens. 相似文献
13.
Maintenance of progenitor cell properties in development is required for proper organogenesis of most organs, including those derived from the endoderm. FGF10 has been shown to play a role in both lung and pancreatic development. Here we find that FGF10 signaling controls stomach progenitor maintenance, morphogenesis and cellular differentiation. Through a characterization of the initiation of terminal differentiation of the three major gastric regions in the mouse, forestomach, corpus and antrum, we first describe the existence of a "secondary transition" event occurring in mouse stomach between E15.5 and E16.5. This includes the formation of terminally differentiated squamous cells, parietal, chief and gastric endocrine cells from a pre-patterned gastric progenitor epithelium. Expression analysis of both FGF and Notch signaling components suggested a role of these networks in such progenitors, which was tested through ectopically expressing FGF10 in the developing posterior stomach. These data provide evidence that gastric gland specification and progenitor cell maintenance is controlled by FGF10. The glandular proliferative niche was disrupted in pPDX-FGF10(FLAG) mice leading to aberrant gland formation, and endocrine and parietal cell differentiation was attenuated. These effects were paralleled by changes in Hes1, Shh and Wnt6 expression, suggesting that FGF10 acts in concert with multiple morphogenetic signaling systems during gastric development. 相似文献
14.
According to the three-signal model of mesoderm patterning in Xenopus, all mesoderm, with the exception of the Spemann organizer, is originally specified as ventral type, such as lateral plate and primary blood islands. It is proposed that the blood islands become restricted to the ventralmost mesoderm because they are not exposed to the BMP-inhibiting activity of the Spemann organizer. We present evidence here that, contrary to predictions of this model, the blood islands remain ventrally restricted even in the absence of Spemann organizer signaling. We further observed that inhibition of FGF signaling with a dominant negative receptor resulted in the expansion of the blood island-forming territory with a concomitant loss of somite. The requirement for FGF signaling in specifying somite versus blood island territories was observed as early as midgastrulation. The nonoverlapping expression domains of Xnr-2 and Xbra in the gastrula marginal zone appear to mark presumptive blood island and somite, respectively. Inhibition of FGF signaling with dominant negative receptor leads to an expansion of Xnr-2 expression and to a corresponding reduction in Xbra expression. On the other hand, we found no evidence that manipulation of BMP signaling, either positively or negatively, altered the expression domains of Xnr-2 and Xbra. These results suggest that FGF signaling, rather than BMP-inhibiting activity, is essential for restriction of the ventral blood islands to ventral mesoderm. 相似文献
15.
Mori S Wu CY Yamaji S Saegusa J Shi B Ma Z Kuwabara Y Lam KS Isseroff RR Takada YK Takada Y 《The Journal of biological chemistry》2008,283(26):18066-18075
Integrins play a role in fibroblast growth factor (FGF) signaling through cross-talk with FGF receptors (FGFRs), but the mechanism underlying the cross-talk is unknown. We discovered that FGF1 directly bound to soluble and cell-surface integrin alphavbeta3 (K(D) about 1 microm). Antagonists to alphavbeta3 (monoclonal antibody 7E3 and cyclic RGDfV) blocked this interaction. alphavbeta3 was the predominant, if not the only, integrin that bound to FGF1, because FGF1 bound only weakly to several beta1 integrins tested. We presented evidence that the CYDMKTTC sequence (the specificity loop) within the ligand-binding site of beta3 plays a role in FGF1 binding. We found that the integrin-binding site of FGF1 overlaps with the heparin-binding site but is distinct from the FGFR-binding site using docking simulation and mutagenesis. We identified an FGF1 mutant (R50E) that was defective in integrin binding but still bound to heparin and FGFR. R50E was defective in inducing DNA synthesis, cell proliferation, cell migration, and chemotaxis, suggesting that the direct integrin binding to FGF1 is critical for FGF signaling. Nevertheless, R50E induced phosphorylation of FGFR1 and FRS2alpha and activation of AKT and ERK1/2. These results suggest that the defect in R50E in FGF signaling is not in the initial activation of FGF signaling pathway components, but in the later steps in FGF signaling. We propose that R50E is a useful tool to identify the role of integrins in FGF signaling. 相似文献
16.
Jantina Toxopeus Brent J. Sinclair 《Biological reviews of the Cambridge Philosophical Society》2018,93(4):1891-1914
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation. 相似文献
17.
Ullrich SE 《Mutation research》2005,571(1-2):185-205
18.
Acute demyelination of adult CNS, resulting from trauma or disease, is initially followed by remyelination. However, chronic lesions with subsequent functional impairment result from eventual failure of the remyelination process, as seen in multiple sclerosis. Studies using animal models of successful remyelination delineate a progression of events facilitating remyelination. A universal feature of this repair process is extensive proliferation of oligodendrocyte progenitor cells (OPs) in response to demyelination. To investigate signals that regulate OP proliferation in response to demyelination we used murine hepatitis virus-A59 (MHV-A59) infection of adult mice to induce focal demyelination throughout the spinal cord followed by spontaneous remyelination. We cultured glial cells directly from demyelinating and remyelinating spinal cords using conditions that maintain the dramatically enhanced OP proliferative response prior to CNS remyelination. We identify PDGF and FGF2 as significant mitogens regulating this proliferative response. Furthermore, we demonstrate endogenous PDGF and FGF2 activity in these glial cultures isolated from demyelinated CNS tissue. These findings correlate well with our previous demonstration of increased in vivo expression of PDGF and FGF2 ligand and corresponding receptors in MHV-A59 lesions. Together these studies support the potential of these pathways to function in vivo as critical factors in regulating remyelination. 相似文献
19.
Keisaku Sato Fanyin Meng Thao Giang Shannon Glaser Gianfranco Alpini 《生物化学与生物物理学报:疾病的分子基础》2018,1864(4):1262-1269
Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen. 相似文献
20.
Sen A Yokokura T Kankel MW Dimlich DN Manent J Sanyal S Artavanis-Tsakonas S 《The Journal of cell biology》2011,192(3):481-495
Spinal muscular atrophy (SMA), a devastating neurodegenerative disorder characterized by motor neuron loss and muscle atrophy, has been linked to mutations in the Survival Motor Neuron (SMN) gene. Based on an SMA model we developed in Drosophila, which displays features that are analogous to the human pathology and vertebrate SMA models, we functionally linked the fibroblast growth factor (FGF) signaling pathway to the Drosophila homologue of SMN, Smn. Here, we characterize this relationship and demonstrate that Smn activity regulates the expression of FGF signaling components and thus FGF signaling. Furthermore, we show that alterations in FGF signaling activity are able to modify the neuromuscular junction defects caused by loss of Smn function and that muscle-specific activation of FGF is sufficient to rescue Smn-associated abnormalities. 相似文献