首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Phosphoglucose isomerase (PGI; EC 5.3.1.9) is the second enzyme in glycolysis, where it catalyzes the isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate. It is the same protein as autocrine motility factor, differentiation and maturation mediator, and neuroleukin. Here, we report a new X-ray crystal structure of rabbit PGI (rPGI) without ligands bound in its active site. The structure was solved at 1.8A resolution by isomorphous phasing with a previously solved X-ray crystal structure of the rPGI dimer containing 6-phosphogluconate in its active site. Comparison of the new structure to previously reported structures enables identification of conformational changes that occur during binding of substrate or inhibitor molecules. Ligand binding causes an induced fit of regions containing amino acid residues 209-215, 245-259 and 385-389. This conformational change differs from the change previously reported to occur between the ring-opening and isomerization steps, in which the helix containing residues 513-521 moves toward the bound substrate. Differences between the liganded and unliganded structures are limited to the region within and close to the active-site pocket.  相似文献   

3.
Conformational changes of beta-lactoglobulin (beta-LG) induced by anionic phospholipid (dimyristoylphosphatidylglycerol, DMPG) at physiological conditions (pH 7.0) have been investigated by UV-VIS, circular dichroism (CD) and fluorescence spectra. The experimental results suggest that beta-LG-DMPG interactions cause beta-LG a structural reorganization of the secondary structure elements accompanied by an increase in alpha-helical content, and a loosening of the protein tertiary structure. The interaction forces between beta-LG and DMPG are further evaluated by fluorescence spectra. The fluorescence spectral data show that conformational changes in the protein are driven by electrostatic interaction at first, then by hydrophobic interaction between a protein with a negative net charge and a negatively charged phospholipid.  相似文献   

4.
Calponin, an actin-linked regulatory protein in smooth muscle, caused a remarkable change in the fluorescence intensity of pyrene-labeled actin in the filamentous form. Calponin, an equimolar ratio to actin, decreased the fluorescence intensity of pyrene-labeled F-actin by some 60% to the level near monomeric actin. This change was partially reversed by Ca2+, when calmodulin was present. Thus it appears that calponin causes conformational changes in actin molecules in an actin filament so as to inhibit their interactions with myosin.  相似文献   

5.
6.
The effects of amino acid starvation on polysome conformation were analyzed comparatively in stringent (relA+) and relaxed (relA) bacteria by measuring the accessibility in vitro of ribosomal proteins to reductive methylation. In polysomes of stringent cells, the conformational state of two proteins (L13 and L29) appeared significantly changed by starvation. In polysomes isolated from relaxed mutants, the accessibility of five proteins (L5, L13, L29, L31 and L32) was found modified.  相似文献   

7.
8.
9.
Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.  相似文献   

10.
Adeno-associated virus (AAV) is frequently used as a vector for gene therapy. The viral capsid consists of three structural proteins (VP1, VP2, and VP3) that have a common C-terminal core (VP3), with N-terminal extensions of increasing length in VP2 and VP1. The capsid encloses a single-stranded genome of up to 4.7 kb, which is packaged into empty capsids. The N-terminal extension of VP1 carries a phospholipase domain that becomes accessible during infection in the endosomal pathway. We have used cryo-electron microscopy and image reconstruction to determine subnanometer-resolution structures of recombinant AAV1 that has packaged different amounts of a 3. 6-kb recombinant genome. The maps show that the AAV1 capsid undergoes continuous conformational changes upon packaging of the genome. The rearrangements occur at the inner capsid surface and lead to constrictions of the pores at the 5-fold symmetry axes and to subtle movements of the β-sheet regions of the capsid proteins. In fully packaged particles, the genome forms stem-like features that contact the inner capsid surface at the 3-fold symmetry axes. We think that the reorganization of the inner surface has an impact on the viral life cycle during infection, preparing the externalization of phospholipase domains through the pores at the 5-fold symmetry axes and possibly genome release.  相似文献   

11.
Conformational changes in a replication origin induced by an initiator protein   总被引:37,自引:0,他引:37  
S Mukherjee  I Patel  D Bastia 《Cell》1985,43(1):189-197
The replication initiator protein of the plasmid R6K binds to seven contiguous 22 bp direct repeats that form an indispensable part of the three replication origins alpha, beta, and gamma. Binding of the initiator to the direct repeats induced a marked bending of the region of gamma replication origin. Binding of the initiator also promoted unwinding of the origin DNA by at least two turns. Distamycin appeared to antagonize the binding of the initiator to the seven 22 bp direct repeats. At the appropriate DNA and protein concentrations the initiator enhanced topoisomerase-induced catenation of the origin containing supercoiled DNA but not of DNA lacking the origin sequence. Thus, the initiator protein caused significant changes in the secondary and tertiary structures of the replication origin.  相似文献   

12.
Post-translational phosphorylation is a ubiquitous mechanism for modulating protein activity and protein-protein interactions. In this work, we examine how phosphorylation can modulate the conformation of a protein by changing the energy landscape. We present a molecular mechanics method in which we phosphorylate proteins in silico and then predict how the conformation of the protein will change in response to phosphorylation. We apply this method to a test set comprised of proteins with both phosphorylated and non-phosphorylated crystal structures, and demonstrate that it is possible to predict localized phosphorylation-induced conformational changes, or the absence of conformational changes, with near-atomic accuracy in most cases. Examples of proteins used for testing our methods include kinases and prokaryotic response regulators. Through a detailed case study of cyclin-dependent kinase 2, we also illustrate how the computational methods can be used to provide new understanding of how phosphorylation drives conformational change, why substituting Glu or Asp for a phosphorylated amino acid does not always mimic the effects of phosphorylation, and how a phosphatase can “capture” a phosphorylated amino acid. This work illustrates how computational methods can be used to elucidate principles and mechanisms of post-translational phosphorylation, which can ultimately help to bridge the gap between the number of known sites of phosphorylation and the number of structures of phosphorylated proteins.  相似文献   

13.
14.
15.
16.
Conformational changes induced by binding of divalent cations to calregulin   总被引:3,自引:0,他引:3  
Scatchard analysis of equilibrium dialysis studies have revealed that in the presence of 3.0 mM MgCl2 and 150 mM KCl, calregulin has a single binding site for Ca2+ with an apparent dissociation constant (apparent Kd) of 0.05 microM and 14 binding sites for Zn2+ with apparent Kd(Zn2+) of 310 microM. Ca2+ binding to calregulin induces a 5% increase in the intensity of intrinsic fluorescence and a 2-3-nm blue shift in emission maximum. Zn2+ binding to calregulin causes a dose-dependent increase of about 250% in its intrinsic fluorescence intensity and a red shift in the emission maximum of about 11 nm. Half-maximal wavelength shift occurs at 0.4 mol of Zn2+/mol of calregulin, and 100% of the wavelength shift is complete at 2 mol of Zn2+/mol of calregulin. In the presence of Zn2+ and calregulin the fluorescence intensity of the hydrophobic fluorescent probe 8-anilino-1-napthalenesulfonate (ANS) was enhanced 300-400% with a shift in emission maximum from 500 to 480 nm. Half-maximal Zn2+-induced shift in ANS emission maximum occurred at 1.2 mol of Zn2+/mol of calregulin, and 100% of this shift occurred at 6 mol of Zn2+/mol of calregulin. Of 12 cations tested, only Zn2+ and Ca2+ produced changes in calregulin intrinsic fluorescence, and none of these metal ions could inhibit the Zn2+-induced red shift in intrinsic fluorescence emission maximum. Furthermore, none of these cations could inhibit or mimic the Zn2+-induced blue shift in ANS emission maximum. These results suggest that calregulin contains distinct and specific ligand-binding sites for Ca2+ and Zn2+. While Ca2+ binding results in the movement of tryptophan away from the solvent, Zn2+ causes a movement of tryptophan into the solvent and the exposure of a domain with considerable hydrophobic character.  相似文献   

17.
Unfolding--refolding of Escherichia coli disulfide isomerase C (DsbC) induced by GdnHCl was studied by intrinsic fluorescence. Interpretation of experimental fluorescence data was done together with the analysis of protein 3D structure. It is shown that although Cys 141 is the next neighbour of a single tryptophan residue Trp 140, sulfur atoms of the disulfide bond Cys 141--Cys 163 are far apart from the indole ring and cannot quench its fluorescence, while the potential quenchers are Met 136 and His 170. It has been revealed that, though each subunit of DsbC contains eight tyrosine residues, only three tyrosine residues (Tyr 171, Tyr 38 and Tyr 52) contribute to the bulk fluorescence of the molecule. The character of intrinsic fluorescence intensity changes induced by GdnHCl (equilibrium and kinetic data), the character of parametric dependencies between fluorescence intensity recorded at 320 and 365 nm, and the existence of an isosbestic point of protein fluorescence spectra in solutions with different GdnHCl concentrations, allowed suggesting a one-step character of DsbC denaturation. The reversibility of this process is also shown.  相似文献   

18.
Binding of stigmatellin, an inhibitor of the Q(o) site of the bc-type complexes, has been shown to induce large conformational changes of the Rieske protein in the respiratory bc(1) complex (Kim, H., Xia, D., Yu, C. A., Xia, J. Z., Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8026-8033; Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S., and Jap, B. K. (1998) Science 281, 64-71; Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A., and Kim, S. H. (1998) Nature 392, 677-684). Such a movement seems necessary to shuttle electrons from the membrane-soluble quinol to the extramembrane heme of cytochrome c(1). To see whether similar changes occur in the related photosynthetic b(6)f complex, we have studied the effect of the binding of stigmatellin to the eukaryotic b(6)f complex by electron crystallography. Comparison of projection maps of thin three-dimensional crystals prepared with or without stigmatellin, and either negatively stained or embedded in glucose, reveals a similar type of movement to that observed in the bc(1) complex and suggests also the occurrence of conformational changes in the transmembrane region.  相似文献   

19.
Formins bind actin filaments and play an essential role in the regulation of the actin cytoskeleton. In this work we describe details of the formin-induced conformational changes in actin filaments by fluorescence-lifetime and anisotropy-decay experiments. The results show that the binding of the formin homology 2 domain of a mammalian formin (mouse mDia1) to actin filaments resulted in a less rigid protein structure in the microenvironment of the Cys374 of actin, weakening of the interactions between neighboring actin protomers, and greater overall flexibility of the actin filaments. The formin effect is smaller at greater ionic strength. The results show that formin binding to the barbed end of actin filaments is responsible for the increase of flexibility of actin filaments. One formin dimer can affect the dynamic properties of an entire filament. Analyses of the results obtained at various formin/actin concentration ratios indicate that at least 160 actin protomers are affected by the binding of a single formin dimer to the barbed end of a filament.  相似文献   

20.
Manganese ion, like Mg2+, has been found to produce high biosynthetic activity of the unadenylylated form of glutamine synthetase obtained from Mycobacterium smegmatis, and the activity with each of these cations was decreased by the adenylylation of the enzyme. Further, the gamma-glutamyltransferase reaction was catalyzed in the presence of either Mn2+, Mg2+, or Co2+ with both unadenylylated and adenylylated enzyme; however, each of these divalent cation-dependent activities was also decreased by one order of magnitude by adenylylation of the enzyme. From studies of UV-difference spectra, it was found that the ability of M. smegmatis glutamine synthetase to assume a number of distinctly different configurations was the result of the varied response of the enzyme to different cations. When either Mn2+, Mg2+, Ca2+, or Co2+ was added to the relaxed (divalent cation-free) enzyme at saturated concentration, each produced a similar UV-difference spectrum of the enzyme, indicating that the conformational states induced by these cations are similar with respect to the polarity of the microenvironment surrounding the tyrosyl and tryptophanyl groups of the enzyme. The binding of Cd2+, Ni2+, or Zn2+ to the relaxed enzyme each produced a different shift in the UV-absorption spectrum of the enzyme, indicating different conformational states. The kinetics of the spectral change that occurred upon addition of Mn2+, Mg2+, or Co2+ to a relaxed enzyme preparation were determined. The first-order rate constants for the decrease in relaxed enzyme with Mn2+ and Mg2+ were 0.604 min-1 and 0.399 min-1, respectively, at 25 degrees C, pH 7.4. The spectral change with Co2+ was completed within the time of mixing (less than 4 s). For these three metal ions, the total spectral change as well as the time course of the change were the same for both the unadenylylated enzyme and the partially adenylylated enzyme. However, Hill coefficients obtained from spectrophotometric titration data for both Mn2+ and Mg2+ were decreased with adenylylated enzyme to compared with unadenylylated enzyme. These results suggest that covalently bound AMP on each subunit may be involved in subunit interactions within the dodecamer. Circular dichroism measurements also indicated that the various structural changes of the M. smegmatis glutamine synthetase were produced by the binding of the divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号