首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralization potencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as VH CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

2.
《MABS-AUSTIN》2013,5(5):462-474
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralizationpotencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

3.
Cathepsin D has been identified as a challenge to remove in downstream bioprocessing of monoclonal antibodies (mAbs) due to interactions with some mAbs. This study focused on investigating the mechanisms of interaction between cathepsin D and two industrial mAbs using a combined experimental and computational approach. Surface plasmon resonance was used to study the impact of pH and salt concentration on these protein–protein interactions. While salt had a moderate effect on the interactions with one of the mAbs, the other mAb demonstrated highly salt-dependent association behavior. Cathepsin D binding to the mAbs was also seen to be highly pH dependent, with operation at pH 9 resulting in a significant decrease in the binding affinity. Protein–protein docking simulations identified three interaction sites on both mAbs; near the complementarity determining region (CDR), in the hinge, and in the CH3 domain. In contrast, only one face of cathepsin D was identified to interact with all the three sites on the mAbs. Surface property analysis revealed that the binding regions on the mAbs contained strong hydrophobic clusters and were predominantly negatively charged. In contrast, the binding site on cathepsin D was determined to be highly positively charged and hydrophobic, indicating that these protein–protein interactions were likely due to a combination of hydrophobic and electrostatic interactions. Finally, covalent crosslinking coupled with mass spectrometry was used to validate the docking predictions and to further investigate the regions of interaction involved in mAb–cathepsin D binding. A strong agreement was observed between the two approaches, and the CDR loops were identified to be important for cathepsin D interactions. This study establishes a combined experimental and computational platform that can be used to probe mAb–host cell protein (HCP) interactions of importance in biomanufacturing.  相似文献   

4.
Using the polyfructose, bacterial levan, as a model polysaccharide, we analyzed how V regions affect binding in anti-polysaccharide mAbs. Previously, panels of mAb were constructed from bacterial levan-immunized BALB/c and CBA/Ca mice. The BALB/c mAb were mostly germline VHJ606:Vkappa11, and a subset contained presumed somatic mutations in the complementarity-determining regions (CDRs) that correlated with increases in avidity for the beta(2-->1) inulin linkage of levan. The CBA/Ca mAb were more heterogeneous in V gene usage, but a subset of inulin-nonreactive mAb were VHJ606:Vlambda and had VH sequence differences in the CDRs from the VHJ606 regions of the BALB/c mAb. In this report, VHJ606 Abs containing various combinations of specifically mutated H and L chains were produced by engineered transfectants and tested for inulin avidity and levan binding. Two presumed somatic mutations seen in CDRs of the BALB/c hybridomas were shown to directly cause marked increases in avidity for inulin (VH N53H, 9-fold; VL N53I, 20-fold; together, 46-fold) but not for beta(2-->6) levan. Exchange of either positions 50 or 53 in VH or the H3 loop between the BALB/c and CBA/Ca mAb resulted in either fine specificity shift or total loss of bacterial levan binding. Three-dimensional models of the V regions suggested that residues that affect binding to inulin alone are near the edge of the CDR surface, while residues involved with binding both forms of levan and affecting fine specificity are in the VH:VL junctional area.  相似文献   

5.
We present the crystal structure determination of an anti‐HIV‐1 gp120 single‐chain variable fragment antibody variant, 3B3, at 2.5 Å resolution. This 3B3 variant was derived from the b12 antibody, using phage display and site‐directed mutagenesis of the variable heavy chain (VH) complementary‐determining regions (CDRs). 3B3 exhibits enhanced binding affinity and neutralization activity against several cross‐clade primary isolates of HIV‐1 by interaction with the recessed CD4‐binding site on the gp120 envelope protein. Comparison with the structures of the unbound and bound forms of b12, the 3B3 structure closely resembles these structures with minimal differences with two notable exceptions. First, there is a reorientation of the CDR‐H3 of the VH domain where the primary sequences evolved from b12 to 3B3. The structural changes in CDR‐H3 of 3B3, in light of the b12‐gp120 complex structure, allow for positioning an additional Trp side chain in the binding interface with gp120. Finally, the second region of structural change involves two peptide bond flips in CDR‐L3 of the variable light (VL) domain triggered by a point mutation in CDR‐H3 of Q100eY resulting in changes in the intramolecular hydrogen bonding patterning between the VL and VH domains. Thus, the enhanced binding affinities and neutralization capabilities of 3B3 relative to b12 probably result from higher hydrophobic driving potential by burying more aromatic residues at the 3B3‐gp120 interface and by indirect stabilization of intramolecular contacts of the core framework residues between the VL and VH domains possibly through more favorable entropic effect through the expulsion of water.  相似文献   

6.
Previously we reported that the variable heavy chain region (VH) of a human beta2 glycoprotein I-dependent monoclonal antiphospholipid antibody (IS4) was dominant in conferring the ability to bind cardiolipin (CL). In contrast, the identity of the paired variable light chain region (VL) determined the strength of CL binding. In the present study, we examine the importance of specific arginine residues in IS4VH and paired VL in CL binding. The distribution of arginine residues in complementarity determining regions (CDRs) of VH and VL sequences was altered by site-directed mutagenesis or by CDR exchange. Ten different 2a2 germline gene-derived VL sequences were expressed with IS4VH and the VH of an anti-dsDNA antibody, B3. Six variants of IS4VH, containing different patterns of arginine residues in CDR3, were paired with B3VL and IS4VL. The ability of the 32 expressed heavy chain/light chain combinations to bind CL was determined by ELISA. Of four arginine residues in IS4VH CDR3 substituted to serines, two residues at positions 100 and 100 g had a major influence on the strength of CL binding while the two residues at positions 96 and 97 had no effect. In CDR exchange studies, VL containing B3VL CDR1 were associated with elevated CL binding, which was reduced significantly by substitution of a CDR1 arginine residue at position 27a with serine. In contrast, arginine residues in VL CDR2 or VL CDR3 did not enhance CL binding, and in one case may have contributed to inhibition of this binding. Subsets of arginine residues at specific locations in the CDRs of heavy chains and light chains of pathogenic antiphospholipid antibodies are important in determining their ability to bind CL.  相似文献   

7.
The quaternary neutralizing epitope (QNE) of HIV-1 gp120 is preferentially expressed on the trimeric envelope spikes of intact HIV virions, and QNE-specific monoclonal antibodies (mAbs) potently neutralize HIV-1. Here, we present the crystal structures of the Fabs of human mAb 2909 and macaque mAb 2.5B. Both mAbs have long beta hairpin CDR H3 regions >20 ? in length that are each situated at the center of their respective antigen-binding sites. Computational analysis showed that the paratopes include the whole CDR H3, while additional CDR residues form shallow binding pockets. Structural modeling suggests a way to understand the configuration of QNEs and the antigen-antibody interaction for QNE mAbs. Our data will be useful in designing immunogens that may elicit potent neutralizing QNE Abs.  相似文献   

8.
Optimal protein function often depends on co-operative interactions between amino acid residues distant in the protein primary sequence yet spatially near one another following protein folding. For example, antibody affinity is influenced by interactions of framework residues with complementarity-determining region (CDR) residues. However, despite the abundance of antibody structural information and computational tools the humanization of rodent antibodies for clinical use often results in a significant loss of affinity. To date, antibody engineering efforts have focused either on optimizing CDR residues involved in antigen binding or on optimizing antibody framework residues that serve critical roles in preserving the conformation of CDRs. In the present study a new approach which permits the rapid identification of co-operatively interacting framework and CDR residues was used to simultaneously humanize and optimize a murine antibody directed against CD40. Specifically, a combinatorial library that examined eight potentially important framework positions concomitantly with focused CDR libraries consisting of variants containing random single amino acid mutations in the third CDR of the heavy and light chains was expressed. Multiple anti-CD40 Fab variants containing as few as one murine framework residue and displaying up to approximately 500-fold higher affinity than the initial chimeric Fab were identified. The higher affinity humanized variants demonstrated a co-operative interaction between light chain framework residue Y49 and heavy chain CDR3 residue R/K101 (coupling energy, DeltaGI=0.9 kcal/mol). Screening of combinatorial framework-CDR libraries permits identification of monoclonal antibodies (mAb) with structures optimized for function, including instances in which the antigen induces conformational changes in the mAb. Moreover, the enhanced humanized variants contain fewer murine framework residues and could not be identified by sequential in vitro humanization and affinity muturation strategies. This approach to identifying co-operatively interacting residues is not restricted to antibody-antigen interactions and consequently, may be used broadly to gain insight into protein structure-function relationships, including proteins that serve as catalysts.  相似文献   

9.
为设计来自抗体的短肽 ,以抗肿瘤坏死因子 (TNF)嵌合抗体 (cA2 )CDRs为模板 ,在其两侧各加 3个随机氨基酸残基 ( X3 CDR X3 ) ,构建了 6个以CDR为基础的肽库 .经过 3轮亲和选择 ,挑取单克隆 ,进一步经ELISA检测TNF阳性噬菌体克隆 ,分离得到 7个ELISA阳性较好的噬菌体肽克隆 ,分别命名为CDR2L1、CDR2L2、CDR2L3、CDR1L1、CDR2H1、CDR3H1、CDR3H 2 .应用MTT方法 ,检测 7个克隆对TNF生物学活性的拮抗作用 .结果显示 :来自CDR2L ,CDR3H肽库中的CDR2L2、CDR2L3,CDR3H2噬菌体肽具有明显的拮抗TNF诱导L92 9细胞的细胞毒作用 ,其中以CDR2L2噬菌体肽的拮抗活性最强 .而来源于CDR1L ,CDR2H肽库的CDR1L1和CDR2H1噬菌体肽和来自CDR2L ,CDR3H肽库中的CDR2L1和CDR3H1噬菌体肽没有明显的拮抗TNF作用 .研究结果初步表明 :从cA2抗体CDR肽库中筛选得到的噬菌体CDR模拟肽具有亲本抗体相似的结合活性和生物学效应 ,从而为开发已知抗体 (特别是治疗用抗体 )CDR为基础的肽药物创建一个技术平台奠定基础  相似文献   

10.
Conditions necessary for in vitro chain recombination of high affinity (10(9) to 10(12) M-1) antidigoxin monoclonal antibodies resulted in decreased affinity for both intact "native" and chain recombinant molecules. Chain recombination by somatic cell fusion was used instead to study the effects on antigen specificity and idiotypy of recombinants in which an homologous light (L) chain substituted for the parental L chain. The antidigoxin antibody 26-10 utilizes a VL sequence highly homologous to that of antibody 40-20, an antidigoxin antibody which uses a different VH gene than does 26-10 and lacks significant reactivity with an anti-26-10 idiotypic serum. The drug-marked antidigoxin cell line 26-10 (gamma 2a, kappa) and a drug-marked light chain producing variant of antidigoxin hybridoma 45-20 (lambda 1) which lacks both digoxin binding and idiotypy were fused. The fusion progeny (gamma 2a, kappa, lambda 1) which binds digoxin and is idiotype-positive, was selected for kappa loss (resulting in loss of digoxin and idiotype binding) and then fused with a heavy (H) chain loss variant of antidigoxin hybridoma 40-20 (kappa, digoxin nonbinding, idiotype negative). The resultant cell line CR-57 (gamma 2a, kappa, lambda) secretes antibodies which assemble the 26-10 H chain with both the 40-20 kappa-chain and the 45-20 lambda 1-chain. The affinity purified recombinant species consisting of 26-10 H chain and 40-20 kappa-chain expresses complete 26-10 idiotypic determinants. However, this recombinant antibody binds digoxin with decreased affinity and altered specificity relative to native 26-10. The binding specificity pattern nonetheless is most similar to the H chain donor. Amino acid and nucleotide sequence analyses of the respective light chains demonstrate six variable region differences between them, two of which are in complementarity-determining regions and the remainder in the framework. Hybridoma-hybridoma fusion provides an alternative to in vitro chain recombination for studying the contribution of chain combinational diversity to antibody diversity, antigen binding, and idiotypy.  相似文献   

11.
The anthrax protective antigen (PA) is a key component of the tripartite anthrax toxin. Monoclonal antibody (mAb) 14B7 and its engineered, affinity-matured variants have been shown to be effective in blocking PA binding to cellular receptors and mitigating anthrax toxicity. Here, we perform computational structural modeling of the mAb 14B7-PA interaction. Our objectives are to determine the structure of the 14B7-PA complex, to deduce a structural explanation for the affinity maturation from the docking models, and to study the effect of inaccuracies in the antibody homology model on docking. We used the RosettaDock program to dock PA with the mAb 14B7 crystal structure or homology model. Our simulations generate two distinct binding orientations consistent with experimental residue mutations that diminish 14B7-PA binding. Furthermore, the models suggest new site-directed mutations to positively identify one of these two solutions as the correct 14B7-PA docking orientation. The models indicate that PA regions 648-660 and 712-720 may be important for 14B7 binding in addition to the known PA epitope, and the binding interfaces are similar to that seen in the PA complex with cellular receptor CMG2. Antibody residues involved in affinity maturation do not contact the antigen in the docking models, suggesting that affinity maturation in the 14B7 family does not result from direct enhancements of antibody-antigen contacts. Docking the homology model produces low-resolution representations of the crystal structure docking orientations, but homology model docking is frustrated by antibody H3 loop conformation errors. This work demonstrates the usefulness and limitations of computational structure prediction for the development of antibody therapeutics, and reemphasizes the need for flexible backbone docking algorithms to achieve high-resolution docking using homology models.  相似文献   

12.
CD22 is a B-cell specific membrane glycoprotein that mediates homotypic and heterotypic cell adhesion; it also regulates B-cell receptor (BCR)-mediated signals. Monoclonal antibodies (mAb) directed at the ligand binding domain of CD22 initiate CD22-mediated signal transduction and apoptosis in B-cell lymphomas (NHL). Amino acid analysis of the complimentary determining regions (CDRs) of six different anti-CD22 ligand blocking mAb revealed a high level of sequence conservation. The heavy chain CDRs 1, 2, and 3 are 85, 40, and 38% conserved, respectively; light chain CDRs 1, 2, and 3, are 95, 90 and 90% conserved, respectively. Based on these conserved sequences, five peptides were designed and synthesized. Only the sequence derived from heavy chain CDR2 (Peptide 5) demonstrated significant B-cell binding. Peptide 5 bound to both malignant and primary B-cells with very little T-cell binding. The affinity had a Km of 5 × 10−6 M. Peptide 5 mediated killing of several NHL cell lines to a degree similar to that of the parent mAb (HB22.7). Peptide 5’s loop structure was shown to be crucial for B-cell binding and ligand blocking. Mutational analysis revealed that most Peptide 5 amino acids were critical for B cell binding. Using a CD22 transfected COS cell line, we demonstrated CD22-specific binding and CD22 ligand blocking to a degree similar to HB22.7. Finally Peptide 5 was used as a vehicle to deliver a pro-apoptotic peptide into NHL cells. Peptide 5 was fused to a BH3 death domain-containing peptide which demonstrated more effective NHL cell killing than the parent peptide.  相似文献   

13.
We report a case study in which liquid-liquid phase separation (LLPS) negatively impacted the downstream manufacturability of a therapeutic mAb. Process parameter optimization partially mitigated the LLPS, but limitations remained for large-scale manufacturing. Electrostatic interaction driven self-associations and the resulting formation of high-order complexes are established critical properties that led to LLPS. Through chain swapping substitutions with a well-behaved antibody and subsequent study of their solution behaviors, we found the self-association interactions between the light chains (LCs) of this mAb are responsible for the LLPS behavior. With the aid of in silico homology modeling and charged-patch analysis, seven charged residues in the LC complementarity-determining regions (CDRs) were selected for mutagenesis, then evaluated for self-association and LLPS properties. Two charged residues in the light chain (K30 and D50) were identified as the most significant to the LLPS behaviors and to the antigen-binding affinity. Four adjacent charged residues in the light chain (E49, K52, R53, and R92) also contributed to self-association, and thus to LLPS. Molecular engineering substitution of these charged residues with a neutral or oppositely-charged residue disrupted the electrostatic interactions. A double-mutation in CDR2 and CDR3 resulted in a variant that retained antigen-binding affinity and eliminated LLPS. This study demonstrates the critical nature of surface charged resides on LLPS, and highlights the applied power of in silico protein design when applied to improving physiochemical characteristics of therapeutic antibodies. Our study indicates that in silico design and effective protein engineering may be useful in the development of mAbs that encounter similar LLPS issues.  相似文献   

14.
Previously we reported that the variable heavy chain region (VH) of a human beta2 glycoprotein I-dependent monoclonal antiphospholipid antibody (IS4) was dominant in conferring the ability to bind cardiolipin (CL). In contrast, the identity of the paired variable light chain region (VL) determined the strength of CL binding. In the present study, we examine the importance of specific arginine residues in IS4VH and paired VL in CL binding. The distribution of arginine residues in complementarity determining regions (CDRs) of VH and VL sequences was altered by site-directed mutagenesis or by CDR exchange. Ten different 2a2 germline gene-derived VL sequences were expressed with IS4VH and the VH of an anti-dsDNA antibody, B3. Six variants of IS4VH, containing different patterns of arginine residues in CDR3, were paired with B3VL and IS4VL. The ability of the 32 expressed heavy chain/light chain combinations to bind CL was determined by ELISA. Of four arginine residues in IS4VH CDR3 substituted to serines, two residues at positions 100 and 100 g had a major influence on the strength of CL binding while the two residues at positions 96 and 97 had no effect. In CDR exchange studies, VL containing B3VL CDR1 were associated with elevated CL binding, which was reduced significantly by substitution of a CDR1 arginine residue at position 27a with serine. In contrast, arginine residues in VL CDR2 or VL CDR3 did not enhance CL binding, and in one case may have contributed to inhibition of this binding. Subsets of arginine residues at specific locations in the CDRs of heavy chains and light chains of pathogenic antiphospholipid antibodies are important in determining their ability to bind CL.  相似文献   

15.
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin β13. It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The VH CDR3 peptide from mAb A4 and VL CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.  相似文献   

16.
Human cytomegalovirus (HCMV) infections are life-threating to people with a compromised or immature immune system. Upon adhesion, fusion of the virus envelope with the host cell is initiated. In this step, the viral glycoprotein gB is considered to represent the major fusogen. Here, we present for the first time structural data on the binding of an anti-herpes virus antibody and describe the atomic interactions between the antigenic domain Dom-II of HCMV gB and the Fab fragment of the human antibody SM5-1. The crystal structure shows that SM5-1 binds Dom-II almost exclusively via only two CDRs, namely light chain CDR L1 and a 22-residue-long heavy chain CDR H3. Two contiguous segments of Dom-II are targeted by SM5-1, and the combining site includes a hydrophobic pocket on the Dom-II surface that is only partially filled by CDR H3 residues. SM5-1 belongs to a series of sequence-homologous anti-HCMV gB monoclonal antibodies that were isolated from the same donor at a single time point and that represent different maturation states. Analysis of amino acid substitutions in these antibodies in combination with molecular dynamics simulations show that key contributors to the picomolar affinity of SM5-1 do not directly interact with the antigen but significantly reduce the flexibility of CDR H3 in the bound and unbound state of SM5-1 through intramolecular side chain interactions. Thus, these residues most likely alleviate unfavorable binding entropies associated with extra-long CDR H3s, and this might represent a common strategy during antibody maturation. Models of entire HCMV gB in different conformational states hint that SM5-1 neutralizes HCMV either by blocking the pre- to postfusion transition of gB or by precluding the interaction with additional effectors such as the gH/gL complex.  相似文献   

17.
Antibody 26-10, obtained in a secondary immune response, binds digoxin with high affinity (K(a) = 1.3 x 10(10) M(-1)) because of extensive shape complementarity. We demonstrated previously that mutations of the hapten contact residue HTrp-100 to Arg (where H refers to the heavy chain) resulted in increased specificity for digoxin analogs substituted at the cardenolide 16 position. However, mutagenesis of H:CDR1 did not result in such a specificity change despite the proximity of the H:CDR1 hapten contact residue Asn-35 to the cardenolide 16 position. Here we constructed a bacteriophage-displayed library containing randomized mutations at H chain residues 30-35 in a 26-10 mutant containing Arg-100 (26-10-RRALD). Phage were selected by panning against digoxin, gitoxin (16-OH), and 16-acetylgitoxin coupled to bovine serum albumin. Clones that retained wild-type Asn at position 35 showed preferred binding to gitoxin, like the 26-10-RRALD parent. In contrast, clones containing Val-35 selected mainly on digoxin-bovine serum albumin demonstrated a shift back to wild-type specificity. Several clones containing Val-35 bound digoxin with increased affinity, approaching that of the wild type in a few instances, in contrast to the mutation Val-35 in the wild-type 26-10 background, which reduces affinity for digoxin 90-fold. It has therefore proven possible to reorder the 26-10 binding site by mutations including two major contact residues on opposite sides of the site and yet to retain high affinity for binding for digoxin. Thus, even among antibodies that have undergone affinity maturation in vivo, different structural solutions to high affinity binding may be revealed.  相似文献   

18.
Single domain antibodies (sdAbs) are the recombinantly-expressed variable domain from camelid (or shark) heavy chain only antibodies and provide rugged recognition elements. Many sdAbs possess excellent affinity and specificity; most refold and are able to bind antigen after thermal denaturation. The sdAb A3, specific for the toxin Staphylococcal enterotoxin B (SEB), shows both sub-nanomolar affinity for its cognate antigen (0.14 nM) and an unusually high melting point of 85°C. Understanding the source of sdAb A3’s high melting temperature could provide a route for engineering improved melting temperatures into other sdAbs. The goal of this work was to determine how much of sdAb A3’s stability is derived from its complementarity determining regions (CDRs) versus its framework. Towards answering this question we constructed a series of CDR swap mutants in which the CDRs from unrelated sdAbs were integrated into A3’s framework and where A3’s CDRs were integrated into the framework of the other sdAbs. All three CDRs from A3 were moved to the frameworks of sdAb D1 (a ricin binder that melts at 50°C) and the anti-ricin sdAb C8 (melting point of 60°C). Similarly, the CDRs from sdAb D1 and sdAb C8 were moved to the sdAb A3 framework. In addition individual CDRs of sdAb A3 and sdAb D1 were swapped. Melting temperature and binding ability were assessed for each of the CDR-exchange mutants. This work showed that CDR2 plays a critical role in sdAb A3’s binding and stability. Overall, results from the CDR swaps indicate CDR interactions play a major role in the protein stability.  相似文献   

19.
The third complementarity-determining regions (CDR3s) of antibodies and T cell receptors (TCRs) have been shown to play a major role in antigen binding and specificity. Consistent with this notion, we demonstrated previously that high-affinity, peptide-specific TCRs could be generated in vitro by mutations in the CDR3alpha region of the 2C TCR. In contrast, it has been argued that CDR1 and CDR2 are involved to a greater extent than CDR3s in the process of MHC restriction, due to their engagement of MHC helices. Based on this premise, we initiated the present study to explore whether higher affinity TCRs generated through mutations in these CDRs or other regions would lead to significant reductions in peptide specificity (i.e. the result of greater binding energy gained through interactions with major histocompatibility complex (MHC) helices). Yeast-display technology and flow sorting were used to select high-affinity TCRs from libraries of CDR mutants or random mutants. High-affinity TCRs with mutations in the first residue of the Valpha, CDR1, CDR2, or CDR3 were isolated. Unexpectedly, every TCR mutant, including those in CDR1 and CDR2, retained remarkable peptide specificity. Molecular modeling of various mutants suggested that such exquisite specificity may be due to: (1) enhanced electrostatic interactions with key peptide or MHC residues; or (2) stabilization of CDRs in specific conformations. The results indicate that the TCR is positioned so that virtually every CDR can contribute to the antigen-specificity of a T cell. The conserved diagonal docking of TCRs could thus orient each CDR loop to sense the peptide directly or indirectly through peptide-induced effects on the MHC.  相似文献   

20.
Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号