首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

2.
Chronic ethanol consumption disrupts whole-body lipid metabolism. Here we tested the hypothesis that regulation of triglyceride homeostasis in adipose tissue is vulnerable to long-term ethanol exposure. After chronic ethanol feeding, total body fat content as well as the quantity of epididymal adipose tissue of male Wistar rats was decreased compared with pair-fed controls. Integrated rates of in vivo triglyceride turnover in epididymal adipose tissue were measured using (2)H(2)O as a tracer. Triglyceride turnover in adipose tissue was increased due to a 2.3-fold increase in triglyceride degradation in ethanol-fed rats compared with pair-fed controls with no effect of ethanol on triglyceride synthesis. Because increased lipolysis accompanied by the release of free fatty acids into the circulation is associated with insulin resistance and liver injury, we focused on determining the mechanisms for increased lipolysis in adipose tissue after chronic ethanol feeding. Chronic ethanol feeding suppressed beta-adrenergic receptor-stimulated lipolysis in both in vivo and ex vivo assays; thus, enhanced triglyceride degradation during ethanol feeding was not due to increased beta-adrenergic-mediated lipolysis. Instead, chronic ethanol feeding markedly impaired insulin-mediated suppression of lipolysis in conscious rats during a hyperinsulinemic-euglycemic clamp as well as in adipocytes isolated from epididymal and subcutaneous adipose tissue. These data demonstrate for the first time that chronic ethanol feeding increased the rate of triglyceride degradation in adipose tissue. Furthermore, this enhanced rate of lipolysis was due to a suppression of the anti-lipolytic effects of insulin in adipocytes after chronic ethanol feeding.  相似文献   

3.
Insulin increases plasma nonesterified fatty acid (NEFA) clearance in humans, but whether this is independent of change in plasma NEFA appearance is currently unknown. Nine nondiabetic men (age: 28+/-3 yr, body mass index: 27.2+/-1.7 kg/m2) underwent euglycemic clamps to maintain low (LINS) vs. high (HINS) physiological insulin levels for 6 h. An intravenous infusion of heparin+Intralipid (HI) was performed during 4 of the 6 h of the clamps (in the last 4 h at LINS and in the first 4 h at HINS), whereas saline infusion (SAL) was administered in the remaining 2 h to modulate plasma NEFA levels independently of plasma insulin levels. Four experimental conditions were obtained in each individual: LINS with saline (LINS/SAL) and with HI infusion (LINS/HI) and HINS with saline (HINS/SAL) and with HI infusion (HINS/HI). Plasma palmitate appearance during HINS/SAL was lower than during the three other experimental conditions (P<0.05). In contrast, plasma linoleate appearance, as expected, was increased by HI independently of insulin level (P<0.02). Plasma palmitate clearance during HINS/SAL was higher than LINS/SAL and LINS/HI (P<0.008), and this increase was blunted during HINS/HI. We observed a linear decrease in plasma palmitate clearance with increasing plasma NEFA appearance independent of insulin levels. Plasma NEFA levels increased exponentially with increase in plasma NEFA appearance. We conclude that insulin stimulates plasma NEFA clearance by reducing the endogenous appearance rate of NEFA. The relationship between plasma NEFA level and appearance rate is nonlinear.  相似文献   

4.
The objective of this study was to test the hypothesis that increased fatty acid trapping by subcutaneous adipose tissue might contribute to the development and/or maintenance of obesity. To do so, venoarterial (V-A) gradients across subcutaneous adipose tissue for triglycerides, glycerol, nonesterified fatty acid (NEFA), and acylation-stimulating protein (ASP) were determined in eight lean females [body mass index (BMI), 22.2 +/- 0.6] and eight obese females (BMI, 34.4 +/- 3.4). Plasma insulin was also measured at intervals throughout this period. Fasting plasma triglyceride was significantly higher in the obese group and postprandial triglyceride was also significantly delayed. In contrast, both triglyceride clearance and fatty acid uptake by subcutaneous adipose tissue were significantly greater in the obese group compared with the lean group. Fasting insulin did not differ between the groups, but postprandial insulin values were significantly higher in the obese group. The pattern of ASP release from subcutaneous adipose tissue also appeared to differ in that it was significantly greater in the early postprandial period (0;-90 min) in the obese group versus the lean group and this correlated with greater triglyceride clearance during this period. Moreover, there were strong, positive correlations between BMI and the V-A gradient for fasting ASP, the 0- to 90-min area under the curve (AUC) for ASP V-A gradient fasting insulin, and the 0- to 90-min AUC for fatty acid incorporation into adipose tissue. Taken together, these data demonstrate that fatty acid trapping by adipose tissue can be increased even when overall plasma triglyceride clearance is delayed. The postprandial pattern of insulin, in particular, was altered in the obese, although it is certainly possible that differences in ASP release or response could also contribute to increased fatty acid trapping in the obese.The data, therefore, suggest that increased fatty acid trapping by adipose tissue may be a feature of some forms of obesity.  相似文献   

5.
Hypertriglyceridemia is common in individuals with human immunodeficiency (HIV) infection, but the mechanisms responsible for increased plasma triglyceride (TG) concentrations are not clear. We evaluated fatty acid and VLDL-TG kinetics during basal conditions and during a glucose infusion that resulted in typical postprandial plasma glucose and insulin concentrations in six men with HIV-dyslipidemia [body mass index (BMI): 28 +/- 2 kg/m2] and six healthy men (BMI: 26 +/- 2 kg/m2). VLDL-TG secretion and palmitate rate of appearance (Ra) in plasma were measured by using stable-isotope-labeled tracer techniques. Basal palmitate Ra and VLDL-TG secretion rates were greater (P < 0.01 for both) in men with HIV-dyslipidemia (1.04 +/- 0.07 micromol palmitate x kg-1 x min-1 and 5.7 +/- 0.6 micromol VLDL-TG x l plasma-1 x min-1) than in healthy men (0.67 +/- 0.08 micromol palmitate. kg-1 x min-1 and 3.0 +/- 0.5 micromol VLDL-TG x l plasma-1 x min-1). Basal VLDL-TG plasma clearance was lower in men with HIV-dyslipidemia (13 +/- 1 ml/min) than in healthy men (19 +/- 2 ml/min; P < 0.05). Glucose infusion decreased palmitate Ra (by approximately 50%) and the VLDL-TG secretion rate (by approximately 30%) in both groups, but the VLDL-TG secretion rate remained higher (P < 0.05) in subjects with HIV-dyslipidemia. These findings demonstrate that increased secretion of VLDL-TG and decreased plasma VLDL-TG clearance, during both fasting and fed conditions, contribute to hypertriglyceridemia in men with HIV-dyslipidemia. Although it is likely that increased free fatty acid release from adipose tissue contributes to the increase in basal VLDL-TG concentration, other factors must be involved, because insulin-induced suppression of lipolysis and systemic fatty acid availability did not normalize the VLDL-TG secretion rate.  相似文献   

6.
Insulin resistance in adipose tissue increases the release of free fatty acids into the circulation, which likely contributes to impaired insulin action in liver and skeletal muscle associated with obesity. However, reliable assessment of adipose tissue insulin resistance requires performing a hyperinsulinemic-euglycemic clamp procedure in conjunction with a fatty acid tracer infusion to determine insulin-mediated suppression of lipolytic rate. We developed a simpler method for evaluating adipose tissue insulin resistance in vivo, determined as the product of palmitate rate of appearance into the bloodstream and plasma insulin concentration during basal conditions. We validated our Adipose Tissue Insulin Resistance Index (ATIRI) by comparison with an assessment of adipose tissue insulin resistance determined by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with a palmitate tracer infusion in 47 obese nondiabetic subjects (body mass index: 40.1 ± 9.3 kg/m(2)). We found the ATIRI correlated closely with adipose tissue insulin resistance assessed during the clamp procedure (r =-0.854, P < 0.001). These results demonstrate that the ATIRI provides a reliable index of adipose tissue insulin resistance in obese subjects.  相似文献   

7.
Subcutaneous abdominal adipose tissue is one of the largest fat depots and contributes the major proportion of circulating nonesterified fatty acids (NEFA). Little is known about aspects of human adipose tissue metabolism in vivo other than lipolysis. Here we collated data from 331 experiments in 255 healthy volunteers over a 23-year period, in which subcutaneous abdominal adipose tissue metabolism was studied by measurements of arterio-venous differences after an overnight fast. NEFA and glycerol were released in a ratio of 2.7:1, different (P < 0.001) from the value of 3.0 that would indicate no fatty acid re-esterification. Fatty acid re-esterification was 10.2 ± 1.4%. Extraction of triacylglycerol (TG) (fractional extraction 5.7 ± 0.4%) indicated intravascular lipolysis by lipoprotein lipase, and this contributed 21 ± 3% of the glycerol released. Glucose uptake (fractional extraction 2.6 ± 0.3%) was partitioned around 20-25% for provision of glycerol 3-phosphate and 30% into lactate production. There was release of lactate and pyruvate, with extraction of the ketone bodies 3-hydroxybutyrate and acetoacetate, although these were small numerically compared with TG and glucose uptake. NEFA release (expressed per 100 g tissue) correlated inversely with measures of fat mass (e.g., with BMI, r(s) = -0.24, P < 0.001). We examined within-person variability. Systemic NEFA concentrations, NEFA release, fatty acid re-esterification, and adipose tissue blood flow were all more consistent within than between individuals. This picture of human adipose tissue metabolism in the fasted state should contribute to a greater understanding of adipose tissue physiology and pathophysiology.  相似文献   

8.
We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured by mass spectrometry (lipidomics). In vitro studies were undertaken in 3T3-L1 adipocytes. rHDL infusion inhibited fasting-induced lipolysis (P = 0.03), fatty acid oxidation (P < 0.01), and circulating glycerol (P = 0.04). In vitro, HDL inhibited adipocyte lipolysis in part via activation of AMPK, providing a possible mechanistic link for the apparent reductions in lipolysis observed in vivo. In contrast, circulating NEFA increased after rHDL infusion (P < 0.01). Lipidomic analyses implicated phospholipase hydrolysis of rHDL-associated phosphatidylcholine as the cause, rather than lipolysis of endogenous fat stores. rHDL infusion inhibits fasting-induced lipolysis and oxidation in patients with type 2 diabetes, potentially through both AMPK activation in adipose tissue and elevation of plasma insulin. The phospholipid component of rHDL also has the potentially undesirable effect of increasing circulating NEFA.  相似文献   

9.
This study tests the hypothesis that the metabolic and endocrine shift characterizing the phase II-phase III transition during prolonged fasting is related to a decrease in fatty acid (FA) oxidation. Changes in plasma concentrations of various metabolites and hormones and in lipolytic fluxes, as determined by continuous infusion of [2-(3)H]glycerol and [1-(14)C]palmitate, were examined in vivo in spontaneously fasting king penguins in the phase II status (large fat stores, protein sparing) before, during, and after treatment with mercaptoacetate (MA), an inhibitor of FA oxidation. MA induced a 7-fold decrease in plasma beta-hydroxybutyrate and a 2- to 2.5-fold increase in plasma nonesterified fatty acids (NEFA), glycerol, and triacylglycerols. MA also stimulated lipolytic fluxes, increasing the rate of appearance of NEFA and glycerol by 60-90%. This stimulation might be partly mediated by a doubling of circulating glucagon, with plasma insulin remaining unchanged. Plasma glucose level was unaffected by MA treatment. Plasma uric acid increased 4-fold, indicating a marked acceleration of body protein breakdown, possibly mediated by a 2.5-fold increase in circulating corticosterone. Strong similarities between these changes and those observed at the phase II-phase III transition in fasting penguins support the view that entrance into phase III, and especially the end of protein sparing, is related to decreased FA oxidation, rather than reduced NEFA availability. MA could be therefore a useful tool for understanding mechanisms underlying the phase II-phase III transition in spontaneously fasting birds and the associated stimulation of feeding behavior.  相似文献   

10.

Background

It has been proposed that abnormal postprandial plasma nonesterified fatty acid (NEFA) metabolism may participate in the development of tissue lipotoxicity and type 2 diabetes (T2D). We previously found that non-diabetic offspring of two parents with T2D display increased plasma NEFA appearance and oxidation rates during intravenous administration of a fat emulsion. However, it is currently unknown whether plasma NEFA appearance and oxidation are abnormal during the postprandial state in these subjects at high-risk of developing T2D.

Methodology

Palmitate appearance and oxidation rates and glycerol appearance rate were determined in eleven healthy offspring of two parents with T2D (positive family history, FH+), 13 healthy subjects without first-degree relatives with T2D (FH-) and 12 subjects with T2D at fasting, during normoglycemic hyperinsulinemic clamp and during continuous oral intake of a standard liquid meal to achieve steady postprandial NEFA and triacylglycerols (TG) without and with insulin infusion to maintain similar glycemia in all three groups.

Principal Findings

Plasma palmitate appearance and oxidation were higher at fasting and during the clamp conditions in the T2D group (all P<0.05). In the postprandial state, palmitate appearance, oxidative and non oxidative rates were all elevated in T2D (all P<0.05) but not in FH+. Both T2D and FH+ displayed elevated postprandial TG vs. FH- (P<0.001). Acute correction of hyperglycemia during the postprandial state did not affect these group differences. Increased waist circumference and BMI were positively associated with elevated postprandial plasma palmitate appearance and oxidation.

Conclusions/Significance

Postprandial plasma NEFA intolerance observed in subjects with T2D is not fully established in non-diabetic offspring of both parents with T2D, despite the presence of increased postprandial plasma TG in the later. Elevated postprandial plasma NEFA appearance and oxidation in T2D is observed despite acute correction of the exaggerated glycemic excursion in this group.  相似文献   

11.
12.
13.
14.
Indirect evidence suggests that impaired triglyceride storage in the subcutaneous fat depot contributes to the development of insulin resistance via lipotoxicity. We directly tested this hypothesis by measuring, in vivo, TG synthesis, de novo lipogenesis (DNL), adipocyte proliferation, and insulin suppression of lipolysis in subcutaneous adipose tissue of BMI-matched individuals classified as insulin resistant (IR) or insulin sensitive (IS). Nondiabetic, moderately obese subjects with BMI 25–35 kg/m2, classified as IR or IS by the modified insulin suppression test, consumed deuterated water (2H2O) for 4 weeks. Deuterium incorporation into glycerol, palmitate, and DNA indicated TG synthesis, DNL, and adipocyte proliferation, respectively. Net TG synthesis and DNL in adipose cells were significantly lower in IR as compared with IS subjects, whereas adipocyte proliferation did not differ significantly. Plasma FFAs measured during an insulin suppression test were 2.5-fold higher in IR subjects, indicating resistance to insulin suppression of lipolysis. Adipose TG synthesis correlated directly with DNL but not with proliferation. These results provide direct in vivo evidence for impaired TG storage in subcutaneous adipose tissue of IR as compared with IS. Relative inability to store TG in the subcutaneous depot may represent a mechanism contributing to the development of insulin resistance in the setting of obesity.  相似文献   

15.
Control of fatty acid homeostasis is crucial to prevent insulin resistance. During fasting, the plasma fatty acid level depends on triglyceride lipolysis and fatty acid re-esterification within fat cells. In rodents, Rosiglitazone controls fatty acid homeostasis by stimulating two pathways in the adipocytes, glyceroneogenesis and glycerol phosphorylation, that provide the glycerol 3-phosphate necessary for fatty acid re-esterification. Here, we analyzed the functionality of both pathways for controlling fatty acid release in subcutaneous adipose tissue samples from lean and overweight women before and after Rosiglitazone ex vivo treatment. In controls, pyruvate, used as a substrate of glyceroneogenesis, could contribute to the re-esterification of up to 65% of the fatty acids released after basal lipolysis, whereas glycerol phosphorylation accounted for only 14 +/- 9%. However, the efficiency of glyceroneogenesis diminished as body mass index (BMI) of women increased. After Rosiglitazone treatment, increase of either pyruvate- or glycerol-dependent fatty acid re-esterification was strictly correlated to that of phosphoenolpyruvate carboxykinase and glycerol kinase, the key enzymes of each pathway, but depended on BMI of the women. Whereas the Rosiglitazone responsiveness of glyceroneogenesis was rather constant according to the BMI of the women, glycerol phosphorylation was mostly enhanced in lean women (BMI < 27). Overall, these data indicate that, whereas glyceroneogenesis is more utilized than glycerol phosphorylation for fatty acid re-esterification in human subcutaneous adipose tissue in the physiological situation, both are solicited in response to Rosiglitazone but with lower efficiency when BMI is increased.  相似文献   

16.
This study aims to determine how glucagon intervenes in the regulation of fuel metabolism, especially lipolysis, at two stages of a spontaneous long-term fast characterized by marked differences in lipid and protein availability and/or utilization (phases II and III). Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo in a subantarctic bird (king penguin) before, during, and after a 2-h glucagon infusion. In the two fasting phases, glucagon infusion at a rate of 0.025 microg. kg(-1). min(-1) induced a three- to fourfold increase in the plasma concentration and in the rate of appearance (Ra) of glycerol and nonesterified fatty acids, the percentage of primary reesterification remaining unchanged. Infusion of glucagon also resulted in a progressive elevation of the plasma concentration of glucose and beta-hydroxybutyrate and in a twofold higher insulinemia. These changes were not significantly different between the two phases. The plasma concentrations of triacylglycerols and uric acid were unaffected by glucagon infusion, except for a 40% increase in plasma uric acid in phase II birds. Altogether, these results indicate that glucagon in a long-term fasting bird is highly lipolytic, hyperglycemic, ketogenic, and insulinogenic, these effects, however, being similar in phases II and III. The maintenance of the sensitivity of adipose tissue lipolysis to glucagon could suggest that the major role of the increase in basal glucagonemia observed in phase III is to stimulate gluconeogenesis rather than fatty acid delivery.  相似文献   

17.
The systemic flux of glycerol and palmitate [a representative nonesterified free fatty acid (NEFA)] was assessed in three different phases of the menstrual cycle at rest and during moderate-intensity exercise. It was hypothesized that circulating glycerol and NEFA turnover would be greatest in the midfollicular (MF) phase of the menstrual cycle, when estrogen is elevated but progesterone low, followed by the midluteal phase (ML; high estrogen and progesterone), and lowest in the early follicular (EF) phase of the menstrual cycle (low estrogen and progesterone). Subjects included moderately active, eumenorrheic, healthy women. Testing occurred after 3 days of diet control and after an overnight fast (12-13 h). Resting and exercise (50% maximal oxygen uptake, 90 min) measurements of tracer-determined glycerol and palmitate kinetics were made. There was a significant increase in both glycerol and palmitate turnover from rest to exercise in all phases of the menstrual cycle (P<0.0001). No significant differences, however, were observed between cycle phases in the systemic flux of glycerol or palmitate, at rest or during exercise. Maximal peripheral lipolysis during exercise, as represented by glycerol rate of appearance at 90 min, equaled 8.45+/-0.96, 8.35+/-1.12, and 7.71+/-0.96 micromol.kg-1.min-1 in the EF, MF, and ML phases, respectively. Circulating free fatty acid utilization also peaked at 90 min of exercise, as indicated by the palmitate rate of disappearance (3.31+/-0.35, 3.17+/-0.39, and 3.47+/-0.26 micromol.kg-1.min-1) in the EF, MF, and ML phases, respectively. In conclusion, systemic rates of glycerol and NEFA turnover (as represented by palmitate flux) were not significantly affected by the cyclic fluctuations in estrogen and progesterone that occur throughout the normal menstrual cycle, either at rest or during 90 min of moderate exercise.  相似文献   

18.
This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5). In both groups, glucose infusion at 5 mg.kg-1.min-1 induced a twofold increase in glycemia. In NSB, glucose had no effect on lipolysis (maintenance of plasma concentrations and rates of appearance of glycerol and nonesterified fatty acids) and no effect on the plasma concentrations of triacylglycerols (TAG), glucagon, insulin, or corticosterone. However, it limited fatty acid (FA) oxidation, as indicated by a 25% decrease in the plasma level of beta-hydroxybutyrate (beta-OHB). In SB, glucose infusion induced an approximately 2.5-fold decrease in lipolytic fluxes and a large decrease in FA oxidation, as reflected by a 64% decrease in the plasma concentration of beta-OHB. There were also a 35% decrease in plasma TAG, a 6.5- and 2.8-fold decrease in plasma glucagon and corticosterone, respectively, and a threefold increase in insulinemia. These data show that in fasting king penguins, glucose regulates lipid metabolism (inhibition of lipolysis and/or of FA oxidation) and affects hormonal status differently in stressed vs. nonstressed individuals. The results also suggest that in birds, as in humans, the availability of glucose, not of FA, is an important determinant of the substrate mix (glucose vs. FA) that is oxidized for energy production.  相似文献   

19.
These studies were conducted to understand the relationship between measures of systemic free fatty acid (FFA) reesterification and regional FFA, glycerol, and triglyceride metabolism during fasting. Indirect calorimetry was used to measure fatty acid oxidation in six men after a 60-h fast. Systemic and regional (splanchnic, renal, and leg) FFA ([(3)H]palmitate) and glycerol ([(3)H]glycerol) kinetics, as well as splanchnic triglyceride release, were measured. The rate of systemic FFA reesterification was 366 +/- 93 micromol/min, which was greater (P < 0.05) than splanchnic triglyceride fatty acid output (64 +/- 6 micromol/min), a measure of VLDL triglyceride fatty acid export. The majority of glycerol uptake occurred in the splanchnic and renal beds, although some leg glycerol uptake was detected. Systemic FFA release was approximately double that usually present in overnight postabsorptive men, yet the regional FFA release rates were of the same proportions previously observed in overnight postabsorptive men. In conclusion, FFA reesterification at rest during fasting far exceeds splanchnic triglyceride fatty acid output. This indicates that nonhepatic sites of FFA reesterification are important, and that peripheral reesterification of FFA exceeds the rate of simultaneous intracellular triglyceride fatty acid oxidation.  相似文献   

20.
The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were significantly higher during the second exercise bout compared with the first (P < 0.05). The responses of plasma nonesterified fatty acids and plasma epinephrine were higher during the second exercise bout, whereas the response of norepinephrine was unchanged and that of growth hormone lower. Plasma insulin levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated with an increase in the exercise-induced rise of epinephrine and with lower plasma insulin values during the repeated exercise bout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号