首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolyl oligopeptidase contains a peptidase domain and its catalytic triad is covered by the central tunnel of a seven-bladed beta-propeller. This domain makes the enzyme an oligopeptidase by excluding large structured peptides from the active site. The apparently rigid crystal structure does not explain how the substrate can approach the catalytic groups. Two possibilities of substrate access were investigated: either blades 1 and 7 of the propeller domain move apart, or the peptidase and/or propeller domains move to create an entry site at the domain interface. Engineering disulfide bridges to the expected oscillating structures prevented such movements, which destroyed the catalytic activity and precluded substrate binding. This indicated that concerted movements of the propeller and the peptidase domains are essential for the enzyme action.  相似文献   

2.
Altered prolyl oligopeptidase (PREP) activity is found in many common neurological and other genetic disorders, and in some cases PREP inhibition may be a promising treatment. The active site of PREP resides in an internal cavity; in addition to the direct interaction between active site and substrate or inhibitor, the pathway to reach the active site (the gating mechanism) must be understood for more rational inhibitor design and understanding PREP function. The gating mechanism of PREP has been investigated through molecular dynamics (MD) simulation combined with crystallographic and mutagenesis studies. The MD results indicate the inter-domain loop structure, comprised of 3 loops at residues, 189-209 (loop A), 577-608 (loop B), and 636-646 (loop C) (porcine PREP numbering), are important components of the gating mechanism. The results from enzyme kinetics of PREP variants also support this hypothesis: When loop A is (1) locked to loop B through a disulphide bridge, all enzyme activity is halted, (2) nicked, enzyme activity is increased, and (3) removed, enzyme activity is only reduced. Limited proteolysis study also supports the hypothesis of a loop A driven gating mechanism. The MD results show a stable network of H-bonds that hold the two protein domains together. Crystallographic study indicates that a set of known PREP inhibitors inhabit a common binding conformation, and this H-bond network is not significantly altered. Thus the domain separation, seen to occur in lower taxa, is not involved in the gating mechanism for mammalian PREP. In two of the MD simulations we observed a conformational change that involved the breaking of the H-bond network holding loops A and B together. We also found that this network was more stable when the active site was occupied, thus decreasing the likelihood of this transition.  相似文献   

3.
Prolyl oligopeptidase (POP) has emerged as a drug target for neurological diseases. A flexible loop structure comprising loop A (res. 189–209) and loop B (res. 577–608) at the domain interface is implicated in substrate entry to the active site. Here we determined kinetic and structural properties of POP with mutations in loop A, loop B, and in two additional flexible loops (the catalytic His loop, propeller Asp/Glu loop). POP lacking loop A proved to be an inefficient enzyme, as did POP with a mutation in loop B (T590C). Both variants displayed an altered substrate preference profile, with reduced ligand binding capacity. Conversely, the T202C mutation increased the flexibility of loop A, enhancing the catalytic efficiency beyond that of the native enzyme. The T590C mutation in loop B increased the preference for shorter peptides, indicating a role in substrate gating. Loop A and the His loop are disordered in the H680A mutant crystal structure, as seen in previous bacterial POP structures, implying coordinated structural dynamics of these loops. Unlike native POP, variants with a malfunctioning loop A were not inhibited by a 17-mer peptide that may bind non-productively to an exosite involving loop A. Biophysical studies suggest a predominantly closed resting state for POP with higher flexibility at the physiological temperature. The flexible loop A, loop B and His loop system at the active site is the main regulator of substrate gating and specificity and represents a new inhibitor target.  相似文献   

4.
Juhász T  Szeltner Z  Polgár L 《Proteins》2007,69(3):633-643
The peptidase domain of prolyl oligopeptidase is covered by a propeller domain, which excludes large peptides and proteins from the catalytic triad. Previous studies indicated that some amino acids of the N-terminal region constitute a part of the substrate entrance to the active site. To investigate the catalytic role of the N-terminus, we removed the residues 1-32 from the enzyme and examined the kinetic, thermodynamic, and structural consequences of the deletion, using the thermophile Pyrococcus furiosus prolyl oligopeptidase. An about threefold decrease in the catalytic activity along with a 20 degrees C reduction in the temperature optimum was observed. The pH-rate profile, the rate-limiting step, and the activation parameters did not change significantly. However, a substantial decrease was observed in the stability of the protein as demonstrated by circular dichroism and differential scanning calorimetry measurements, and by denaturation with guanidinium chloride. It was concluded that the N-terminal segment did not facilitate the substrate binding, independent of the size of the substrate, but contributed principally to the protein stability required for the formation of the proper active site.  相似文献   

5.
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism.  相似文献   

6.
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3‐hydroxybutyrate) depolymerase were identified in two high‐resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281–295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3‐hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281–295 in comparison to the apo (substrate‐free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281–295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351–1361. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Proteases have a variety of strategies for selecting substrates in order to prevent uncontrolled protein degradation. A recent crystal structure determination of prolyl oligopeptidase has suggested a way for substrate selection involving an unclosed seven-bladed β-propeller domain. We have engineered a disulfide bond between the first and seventh blades of the propeller, which resulted in the loss of enzymatic activity. These results provided direct evidence for a novel strategy of regulation in which oscillating propeller blades act as a gating filter during catalysis, letting small peptide substrates into the active site while excluding large proteins to prevent accidental proteolysis.  相似文献   

8.
Acylpeptide hydrolase of Aeropyrum pernix K1 is composed of a catalytic alpha/beta hydrolase domain and a non-catalytic beta-propeller domain. The Glu88 residue of the propeller domain is highly conserved in the prolyl oligopeptidase family and forms an inter-domain salt bridge with Arg526, a key residue for substrate binding. We have dissected the functions of Glu88 using site-directed mutagenesis, steady-state kinetics analyses, and molecular dynamics simulations. In E88A and E88A/R526K mutants, with a broken inter-domain salt bridge and a positive charge at position 526, catalytic activities for both a peptidase substrate and an esterase substrate were almost abolished. Analysis of the pH dependence of the mutants' reaction kinetics indicates that these mutations lead to changes in the electrostatic environment of the active site, which can be modulated by chloride ions. These findings indicate that the neutralization at position 526 is favorable for the activity of the enzyme, which is also verified by the catalytic behavior of E88A/R526V mutant. All mutants have lower thermodynamic stability than the wild-type. Therefore, Glu88 plays two major roles in the function of the enzyme: neutralizing the positive charge of Arg526, thereby increasing the enzymatic activity, and forming the Glu88-Arg526 salt bridge, thereby stabilizing the protein.  相似文献   

9.
Prolyl oligopeptidase is implicated in the metabolism of neuropeptides and is involved in amnesia and depression. It contains a peptidase and an unusual beta-propeller domain that excludes large peptides and proteins from the active site. The propeller consists of seven blades not closed by a "Velcro" between the first and last blades. The propeller domain was expressed as a stable, soluble protein, P(7). Its conformational identity with that of the native propeller was verified by circular dichroism and digestion with trypsin. Differential scanning calorimetry, kinetic denaturation with urea and equilibrium denaturation with guanidinium chloride have shown that the propeller is more stable than the parent prolyl oligopeptidase. The deletion of the seventh blade of P(7) led to a stable structure, a six-bladed propeller, P(6), which immediately dimerized, in contrast with the monomeric P(7). Addition of an 11 amino acid residue extension to the C terminus of P(6) also produced a dimer, whereas the P(6) labelled with a His-tag at the N terminus displayed a monomer structure. The stability of P(6) and its variants was lower than that of P(7). The denatured propellers refolded readily. This study shows that the unclosed P(7) is a stable structure, and suggests that an opening between the peptidase and the propeller domains is more important for the substrate entry than is the putative opening between the first and seventh blades. Our results suggest that the propellers are simple, versatile structures, which can be prepared artificially.  相似文献   

10.
11.
The three-dimensional structure of the active site region of the enzyme HIV-1 integrase is not unambiguously known. This region includes a flexible peptide loop that cannot be well resolved in crystallographic determinations. Here we present two different computational approaches with different levels of resolution and on different time-scales to understand this flexibility and to analyze the dynamics of this part of the protein. We have used molecular dynamics simulations with an atomic model to simulate the region in a realistic and reliable way for 1 ns. It is found that parts of the loop wind up after 300 ps to extend an existing helix. This indicates that the helix is longer than in the earlier crystal structures that were used as basis for this study. Very recent crystal data confirms this finding, underlining the predictive value of accurate MD simulations. Essential dynamics analysis of the MD trajectory yields an anharmonic motion of this loop. We have supplemented the MD data with a much lower resolution Brownian dynamics simulation of 600 ns length. It provides ideas about the slow-motion dynamics of the loop. It is found that the loop explores a conformational space much larger than in the MD trajectory, leading to a "gating"-like motion with respect to the active site.  相似文献   

12.
Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface.  相似文献   

13.
Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness. These (and related) structures show the importance of structural dynamics, governed by a fine enthalpic and entropic balance, in substrate size selectivity and catalysis. Peptides over 30 residues cannot fit the enzyme cavity, preventing the complete domain closure required for a key propeller Asp/Glu to fix the catalytic His and Arg in the catalytically competent conformation. This size exclusion mechanism protects larger peptides and proteins from degradation. Similar bacterial prolyl endopeptidase and archael acylaminoacyl peptidase structures demonstrate this mechanism is conserved among oligopeptidase family enzymes across all three domains of life.  相似文献   

14.
Abstract

The three-dimensional structure of the active site region of the enzyme HIV-1 integrase is not unambiguously known. This region includes a flexible peptide loop that cannot be well resolved in crystallographic determinations. Here we present two different computional approaches with different levels of resolution and on different time-scales to understand this flexibility and to analyze the dynamics of this part of the protein. We have used molecular dynamics simulations with an atomic model to simulate the region in a realistic and reliable way for 1 ns. It is found that parts of the loop wind up after 300 ps to extend an existing helix. This indicates that the helix is longer than in the earlier crystal structures that were used as basis for this study. Very recent crystal data confirms this finding, underlining the predictive value of accurate MD simulations. Essential dynamics analysis of the MD trajectory yields an anharmonic motion of this loop. We have supplemented the MD data with a much lower resolution Brownian dynamics simulation of 600 ns length. It provides ideas about the slow-motion dynamics of the loop. It is found that the loop explores a conformational space much larger than in the MD trajectory, leading to a “gating”-like motion with respect to the active site.  相似文献   

15.
Acylpeptide hydrolases (APH; also known as acylamino acid releasing enzyme) catalyze the removal of an N-acylated amino acid from blocked peptides. The crystal structure of an APH from the thermophilic archaeon Aeropyrum pernix K1 to 2.1 A resolution confirms it to be a member of the prolyl oligopeptidase family of serine proteases. The structure of apAPH is a symmetric homodimer with each subunit comprised of two domains. The N-terminal domain is a regular seven-bladed beta-propeller, while the C-terminal domain has a canonical alpha/beta hydrolase fold and includes the active site and a conserved Ser445-Asp524-His556 catalytic triad. The complex structure of apAPH with an organophosphorus substrate, p-nitrophenyl phosphate, has also been determined. The complex structure unambiguously maps out the substrate binding pocket and provides a basis for substrate recognition by apAPH. A conserved mechanism for protein degradation from archaea to mammals is suggested by the structural features of apAPH.  相似文献   

16.
The dynamical and structural properties of lignin peroxidase and its Trp171Ala mutant have been investigated in aqueous solution using molecular dynamics (MD) simulations. In both cases, the enzyme retained its overall backbone structure and all its noncovalent interactions in the course of the MD simulations. Very interestingly, the analysis of the MD trajectories showed the presence of large fluctuations in correspondence of the residues forming the heme access channel; these movements enlarge the opening and facilitate the access of substrates to the enzyme active site. Moreover, steered molecular dynamics docking simulations have shown that lignin peroxidase natural substrate (veratryl alcohol) can easily approach the heme edge through the access channel.  相似文献   

17.
Dipeptidyl peptidase IV (DPPIV) is a member of the prolyl oligopeptidase family of serine proteases. DPPIV removes dipeptides from the N terminus of substrates, including many chemokines, neuropeptides, and peptide hormones. Specific inhibition of DPPIV is being investigated in human trials for the treatment of type II diabetes. To understand better the molecular determinants that underlie enzyme catalysis and substrate specificity, we report the crystal structures of DPPIV in the free form and in complex with the first 10 residues of the physiological substrate, Neuropeptide Y (residues 1-10; tNPY). The crystal structure of the free form of the enzyme reveals two potential channels through which substrates could access the active site-a so-called propeller opening, and side opening. The crystal structure of the DPPIV/tNPY complex suggests that bioactive peptides utilize the side opening unique to DPPIV to access the active site. Other structural features in the active site such as the presence of a Glu motif, a well-defined hydrophobic S1 subsite, and minimal long-range interactions explain the substrate recognition and binding properties of DPPIV. Moreover, in the DPPIV/tNPY complex structure, the peptide is not cleaved but trapped in a tetrahedral intermediate that occurs during catalysis. Conformational changes of S630 and H740 between DPPIV in its free form and in complex with tNPY were observed and contribute to the stabilization of the tetrahedral intermediate. Our results facilitate the design of potent, selective small molecule inhibitors of DPPIV that may yield compounds for the development of novel drugs to treat type II diabetes.  相似文献   

18.
The crystal structure of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis was determined. Prolyl tripeptidyl aminopeptidase consists of beta-propeller and catalytic domains, and a large cavity between the domains; this structure is similar to dipeptidyl aminopeptidase IV. A catalytic triad (Ser603, His710, and Asp678) was located in the catalytic domain; this triad was virtually identical to that of the enzymes belonging to the prolyl oligopeptidase family. The structure of an inactive S603A mutant enzyme complexed with a substrate was also determined. The pyrrolidine ring of the proline residue appeared to fit into a hydrophobic pocket composed of Tyr604, Val629, Trp632, Tyr635, Tyr639, Val680, and Val681. There were characteristic differences in the residues of the beta-propeller domain, and these differences were related to the substrate specificity of tripeptidyl activity. The N-terminal amino group was recognized by salt bridges, with two carboxyl groups of Glu205 and Glu206 from a helix in dipeptidyl aminopeptidase IV. In prolyl tripeptidyl aminopeptidase, however, the Glu205 (located in the loop) and Glu636 were found to carry out this function. The loop structure provides sufficient space to accommodate three N-terminal residues (Xaa-Xaa-Pro) of substrates. This is the first report of the structure and substrate recognition mechanism of tripeptidyl peptidase.  相似文献   

19.
Culture filtrates of 22 mushrooms were screened for extracellular prolyl oligopeptidase activity. Four strains with relatively high enzyme activity were all from inky cap mushrooms. The production of Coprinopsis clastophylla prolyl oligopeptidase was associated with the growth of the fungus and the enzyme was not released by cell lysis. The enzyme was purified 285-fold to a specific activity of 52.05 U/mg. It was purified to a single band on a native polyacrylamide gel. However, the enzyme separated into three bands on a sodium dodecyl sulfate-polyacrylamide gel with mobility corresponding to molecular weights of approximately 84, 60, and 26 kDa. The results of tandem mass spectrometric analysis revealed that the 60 kDa protein was likely a degradation product of the 84 kDa protein. The isoelectric point of the purified enzyme was 5.2. The purified enzyme had an optimal pH and temperature of 8.0 and 37°C, respectively. Diisopropyl fluorophosphate (DFP), p-chloromercuribenzoaic acid (PCMB), Hg(2+), and Cu(2+) strongly inhibited C. clastophylla prolyl oligopeptidase. This enzyme is a serine peptidase and one or more cysteine residues of the enzyme are close to the active site.  相似文献   

20.
Structural data produced by a 2-ns molecular dynamics (MD) simulation on Geobacillus alanine racemase (AlaR; PDB: 1SFT) was used to study hydration around the two AlaR active sites. AlaR is a crucial enzyme for bacterial cell wall biosynthesis. It has been shown previously that the potency of an inhibitor can be increased by incorporating a functional group or atom that displaces hydration sites close to the substrate binding pocket of its target enzyme. The complete linkage algorithm was used for cluster analysis of the active site water positions from 126 solvent configurations sampled at regular intervals from the 2-ns MD simulation. Crystal waters in the 1SFT X-ray structure occupy most of the tightly bound water sites that were discovered. We show here that tightly bound water sites can be identified by cluster analysis of MD-generated coordinates starting with data supplied by a single X-ray structure, and we predict a highly conserved hydration site close to the carboxyl oxygen of L-Ala substrate. This approach holds promise for accelerating the drug design process. We also discuss an analysis of the well-known notion of residence time and introduce a new measure called retention time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号