首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most interesting features of magnetic field (MF) responsiveness in animals is the signal transduction mechanism from sensing MF to behavior. To develop a model system for understanding the process, we performed a preliminary behavioral assay using an insect, the common cutworm, Spodoptera litura (Fabricius). In contrast to sham exposure, a continuous 60 Hz oscillating MF (0.2 mT) induced a significant increase in movement in third instar larvae: the MF‐induced movement was longer in total duration and had an earlier onset than movement from sham exposure. Not surprisingly, the movement duration of the group test was notably higher than that of the individual test, suggesting that the individual test is more favorable for assessing the MF effect on movement. Considering the simplicity of the experimental operation and obvious non‐conditioned responsiveness to the MF, this model might be suitable for studying magnetoreception and following the signal transduction mechanism between neurons and behavior.  相似文献   

2.
3.
Changes in the behavior of Morimus funereus individuals were investigated as early manifestations of the contact of a living system with a changed environment primarily established via the nervous system. These experiments were aimed at revealing possible behavioral differences of a laboratory population of cerambycid beetle M. funereus in an “open field” before and after exposure to an extremely low frequency magnetic field (ELF‐MF, 50 Hz, 2 mT). The experimental groups were divided into several activity categories and exposed to ELF‐MF. The results showed that the activity increased in the groups with medium and low motor activity, but decreased in highly active individuals. High individual variability was found in the experimental groups, as well as differences in motor activities between the sexes, both before and after exposure to ELF‐MF. According to preliminary results, we assume the changes of activity in both sexes after exposure to ELF‐MF. The results showed a tendency toward locomotor activity decrease, the affect being more pronounced in females. As opposed to this type of activity, stereotypic activity of males was increased after the exposure, whereas females maintained the expected tendency of decrease. However, we did not obtain statistically significant differences because of a high individual variability and a low total number of individuals in the experiment (N = 28). Only a detailed analysis of the locomotor activity at 1‐min intervals showed some statistically significant differences in behavior between the sexes.  相似文献   

4.
The results of studies on possible effects of radiofrequency electromagnetic fields (RF‐EMFs) on human waking electroencephalography (EEG) have been quite heterogeneous. In the majority of studies, changes in the alpha‐frequency range in subjects who were exposed to different signals of mobile phone‐related EMF sources were observed, whereas other studies did not report any effects. In this review, possible reasons for these inconsistencies are presented and recommendations for future waking EEG studies are made. The physiological basis of underlying brain activity, and the technical requirements and framework conditions for conducting and analyzing the human resting‐state EEG are discussed. Peer‐reviewed articles on possible effects of EMF on waking EEG were evaluated with regard to non‐exposure‐related confounding factors. Recommendations derived from international guidelines on the analysis and reporting of findings are proposed to achieve comparability in future studies. In total, 22 peer‐reviewed studies on possible RF‐EMF effects on human resting‐state EEG were analyzed. EEG power in the alpha frequency range was reported to be increased in 10, decreased in four, and not affected in eight studies. All reviewed studies differ in several ways in terms of the methodologies applied, which might contribute to different results and conclusions about the impact of EMF on human resting‐state EEG. A discussion of various study protocols and different outcome parameters prevents a scientifically sound statement on the impact of RF‐EMF on human brain activity in resting‐state EEG. Further studies which apply comparable, standardized study protocols are recommended. Bioelectromagnetics. 2019;40:291–318. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

5.
Much evidence demonstrates the antinociceptive effect of magnetic fields (MFs). However, the analgesic action mechanism of the electromagnetic field (EMF) is not exactly understood. The aim of the present study was to investigate the effects of 5‐HT1 and 5‐HT2 receptor agonists (serotonin HCl and 2,5‐dimethoxy‐4‐iodoamphetamine [DOI] hydrochloride) on EMF‐induced analgesia. In total, 66 adult male Wistar albino rats with an average body mass of 225 ± 13 g were used in this study. The animals were subjected to repeated exposures of alternating 50 Hz and 5 mT EMF for 2 h a day for 15 days. Prior to analgesia tests, serotonin HCl (5‐HT1 agonist) 4 mg/kg, WAY 100635 (5‐HT1 antagonist) 0.04 mg/kg, DOI hydrochloride (5‐HT2 receptor agonist) 4 mg/kg, and SB 204741 (5‐HT2 antagonist) 0.5 mg/kg doses were injected into rats. For statistical analysis of the data, analysis of variance was used and multiple comparisons were determined by Tukey’s test. Administration of serotonin HCl MF (5 mT)‐exposed rats produced a significant increase in percent maximal possible effect (% MPE) as compared with EMF group (P < 0.05). On the contrary, injection of WAY 100635 to MF‐exposed rats produced a significant decrease in analgesic activity (P < 0.05). Similarly, the administration of DOI hydrochloride significantly increased % MPE values as compared with the EMF group while SB 204741 reduced it (P < 0.05). In conclusion, our results suggested that serotonin 5‐HT1 and 5‐HT2 receptors play an important role in EMF‐induced analgesia; however, further research studies are necessary to understand the mechanism. Bioelectromagnetics. 2019;40:319–330. © 2019 Bioelectromagnetics Society.  相似文献   

6.
An extremely low‐frequency magnetic field (ELF‐MF) is generated by power lines and household electrical devices. Many studies have suggested an association between chronic ELF‐MF exposure and anxiety and/or depression. The mechanism of these effects is assumed to be a stress response induced by ELF‐MF exposure. However, this mechanism remains controversial. In the present study, we investigated whether chronic ELF‐MF exposure (intensity, 3 mT; total exposure, 200 h) affected emotional behavior and corticosterone synthesis in mice. ELF‐MF‐treated mice showed a significant increase in total immobility time in a forced swim test and showed latency to enter the light box in a light–dark transition test, compared with sham‐treated (control) mice. Corticosterone secretion was significantly high in the ELF‐MF‐exposed mice; however, no changes were observed in the amount of the adrenocorticotropic hormone and the expression of genes related to stress response. Quantification of the mRNA levels of adrenal corticosteroid synthesis enzymes revealed a significant reduction in Cyp17a1 mRNA in the ELF‐MF‐exposed mice. Our findings suggest the possibility that high intensity and chronic exposure to ELF‐MF induces an increase in corticosterone secretion, along with depression‐ and/or anxiety‐like behavior, without enhancement of the hypothalamic–pituitary–adrenal axis. Bioelectromagnetics 34:43–51, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We report new data regarding the molecular mechanisms of GSM‐induced increase of cell endocytosis rate. Even though endocytosis represents an important physical and biological event for cell physiology, studies on modulated electromagnetic fields (EMF) effects on this process are scarce. In a previous article, we showed that fluid phase endocytosis rate increases when cultured cells are exposed to 900 MHz EMF similar to mobile phones' modulated GSM signals (217 Hz repetition frequency, 576 µs pulse width) and to electric pulses similar to the GSM electrical component. Trying to distinguish the mechanisms sustaining this endocytosis stimulation, we exposed murine melanoma cells to Lucifer Yellow (LY) or to GSM–EMF/electric pulses in the presence of drugs inhibiting the clathrin‐ or the caveolin‐dependent endocytosis. Experiments were performed at a specific absorption rate (SAR) of 3.2 W/kg in a wire patch cell under homogeneously distributed EMF field and controlled temperature (in the range of 28.5–29.5 °C). Thus, the observed increase in LY uptake was not a thermal effect. Chlorpromazine and ethanol, but not Filipin, inhibited this increase. Therefore, the clathrin‐dependent endocytosis is stimulated by the GSM–EMF, suggesting that the cellular mechanism affected by the modulated EMF involves vesicles that detach from the cell membrane, mainly clathrin‐coated vesicles. Bioelectromagnetics 30:222–230, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low‐frequency electromagnetic field (ELF‐EMF)‐induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF‐EMF for 60 min. significantly increased the Nav current (INa) densities by 62.5%. MT (5 μM) inhibited the ELF‐EMF‐induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady‐state activation curve was significantly shifted towards hyperpolarization by ELF‐EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF‐EMF. ELF‐EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK‐7 did not reduce the ELF‐EMF‐induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF‐EMF‐induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca2+ level, but it significantly elevated the intracellular Ca2+ level evoked by the high K+ stimulation in cerebellar GC that were either exposed or not exposed to ELF‐EMF. In the presence of ruthenium red, a ryanodine‐sensitive receptor blocker, the MT‐induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF‐EMF exposure through Ca2+ influx‐induced Ca2+ release.  相似文献   

9.
To investigate the effects of low frequency electromagnetic fields (EMF) on the proliferation of epidermal stem cells, human epidermal stem cells (hESC) were isolated, expanded ex vivo, and then exposed to a low frequency EMF. The test and control cells were placed under the same environment. The test cells were exposed for 30 min/day to a 5 mT low frequency EMF at 1, 10, and 50 Hz for 3, 5, or 7 days. The effects of low frequency EMF on cell proliferation, cell cycle, and cell‐surface antigen phenotype were investigated. Low frequency EMF significantly enhanced the proliferation of hESC in the culture medium in a frequency‐dependent manner, with the highest cell proliferation rate at 50 Hz (P < 0.05). Exposure to a low frequency EMF significantly increased the percentage of cells at the S phase of the cell cycle, coupled with a decrease in the percentage of cells in the G1 phase (P < 0.05) but the effect was not frequency dependent. The percentage of CD29+/CD71? cells remained unchanged in the low frequency EMF‐exposed hESC. The results suggested that low frequency EMF influenced hESC proliferation in vitro, and this effect was related to the increased proportion of cells at the S phase. Bioelectromagnetics 34:74–80, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Evidence from epidemiological and animal studies showed that exposure to extremely low frequency magnetic fields (ELF‐MF) could produce deleterious effects on reproduction. In order to investigate the possible mechanism of MF exposure on reproductive effects, first trimester human chorionic villi at 8–10 weeks' gestation were obtained, and trophoblasts were isolated, cultured, and exposed to a 50‐Hz MF for different durations. The human chorionic gonadotropin (hCG) and progesterone in the culture medium was measured by electrochemiluminescence immunoassay. The mRNA levels of apoptosis‐related genes bcl‐2, bax, caspase‐3, p53, and fas in trophoblasts were analyzed using real‐time RT‐PCR. The results showed that exposure of trophoblasts to MF at 0.2 mT for 72 h did not affect secretion of hCG and progesterone from these cells. There was also no significant change in secretion of these hormones when trophoblasts were exposed to a 0.4 mT MF for 48 h. However, MF significantly inhibited hCG and progesterone secretion of trophoblasts after exposure for 72 h at 0.4 mT. Results of apoptosis‐related gene expression analysis showed that, within 72 h of exposure at 0.4 mT, there was no significant difference between MF exposure and control on the expression pattern of each gene. Based on results of the present experiment, it is suggested that exposure to MF for a longer duration (72 h) could inhibit secretion of hCG and progesterone by human first trimester villous trophoblasts, however, the effect might not be related to trophoblast apoptosis. Bioelectromagnetics 31:566–572, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
This study aimed to determine the effect of extremely low‐frequency electromagnetic fields (ELF‐EMF) on the physiological response of phagocytes to an infectious agent. THP‐1 cells (human monocytic leukemia cell line) were cultured and 50 Hz, 1 mT EMF was applied for 4–6 h to cells induced with Staphylococcus aureus or interferon gamma/lipopolysaccharide (IFγ/LPS). Alterations in nitric oxide (NO), inducible nitric oxide synthase (iNOS) levels, heat shock protein 70 levels (hsp70), cGMP levels, caspase‐9 activation, and the growth rate of S. aureus were determined. The growth curve of exposed bacteria was lower than the control. Field application increased NO levels. The increase was more prominent for S. aureus‐induced cells and appeared earlier than the increase in cells without field application. However, a slight decrease was observed in iNOS levels. Increased cGMP levels in response to field application were closely correlated with increased NO levels. ELF‐EMF alone caused increased hsp70 levels in a time‐dependent manner. When cells were induced with S. aureus or IFγ/LPS, field application produced higher levels of hsp70. ELF‐EMF suppressed caspase‐9 activation by a small extent. These data confirm that ELF‐EMF affects bacterial growth and the response of the immune system to bacterial challenges, suggesting that ELF‐EMF could be exploited for beneficial uses. Bioelectromagnetics 31:603–612, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF‐EMF) on health. In the present study, we investigated whether RF‐EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aβ)‐related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF‐EMF‐ and sham‐exposed groups, eight mice per group). The RF‐EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y‐maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non‐spatial memory following 3‐month RF‐EMF exposure. Furthermore, Aβ deposition and APP and carboxyl‐terminal fragment β (CTFβ) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aβ peptides were also investigated. In behavioral tests, mice that were exposed to RF‐EMF for 3 months did not exhibit differences in spatial and non‐spatial memory compared to the sham‐exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF‐EMF did not alter APP and CTFβ levels or Aβ deposition in the brains of the 5xFAD mice. These findings indicate that 3‐month RF‐EMF exposure did not affect Aβ‐related memory impairment or Aβ accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391–399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society.  相似文献   

13.
Electric field strength values calculated by wave propagation modeling were applied as an exposure metric in a case–control study conducted in Germany to investigate a possible association between radio frequency electromagnetic fields (RF‐EMF) emitted from television and radio broadcast transmitters and the risk of childhood leukemia. To validate this approach it was examined at 850 measurement sites whether calculated RF‐EMF are an improvement to an exposure proxy based on distance from the place of residence to a transmitter. Further, the agreement between measured and calculated RF‐EMF was explored. For dichotomization at the 90% quantiles of the exposure distributions it was found that distance agreed less with measured RF‐EMF (Kappa coefficient: 0.55) than did calculated RF‐EMF (Kappa coefficient: 0.74). Distance was a good exposure proxy for a single transmitter only which uses the frequency bands of amplitude modulated radio, whereas it appeared to be of limited informative value in studies involving several transmitters, particularly if these are operating in different frequency bands. The analysis of the agreement between calculated RF‐EMF and measured RF‐EMF showed a sensitivity of 76.6% and a specificity of 97.4%, leading to an exposure misclassification that still allows one to detect a true odds ratio as low as 1.4 with a statistical power of >80% at a two‐sided significance level of 5% in a study with 2,000 cases and 6,000 controls. Thus, calculated RF‐EMF is confirmed to be an appropriate exposure metric in large‐scale epidemiological studies on broadcast transmitters. Bioelectromagnetics 30:81–91, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
This study aims to assess the levels of extremely low frequency magnetic fields (ELF‐MF) emitted from portable hand‐held fans (HHFs) and their principal frequency and to identify factors influencing these levels. We collected a total of eleven models of HHF and monitored the ELF‐MF as a function of fan speed and distance from the fan. EMDEX II was used to monitor the ELF‐MF. An SMP2 EMF‐meter equipped with a P400 field probe was used to determine the levels of ELF‐MF and the frequency spectrum. Ten of the fans, excluding only one bladeless‐fan model, emitted a high level of ELF‐MF near the source of the HHF direct‐current motor. The maximum measured level of ELF‐MF ranged from 14.07 to 218.7 µT. All measurements of the ELF‐MF taken within 10 cm from the HHFs showed values higher than 1.0 µT. ELF‐MF levels were found to decrease markedly with distance, regardless of the HHF product. The level of ELF‐MF rose noticeably with increased fan speed. The speed of and distance from the HHF significantly influenced the level of ELF‐MF. All principal frequencies ranged from 1 to 300 Hz, which falls in the typical range of ELF. Bioelectromagnetics. 2019;40:569–577. © 2019 Bioelectromagnetics Society.  相似文献   

15.
Previous studies have indicated that there is no consensus on the effects of extremely low‐frequency electromagnetic (ELF‐EMF) exposure on the cardiovascular system. This study aimed to explore the short‐term effect of ELF‐EMF exposure on heart rate (HR) and HR variability (HRV). The sample consisted of 34 healthy males aged 18–27 years. The participants were randomly assigned to the EMF (n = 17) or the Sham group (n = 17). We employed a double‐blind repeated‐measures design consisting of three 5 min experimental periods. The chest region of each individual in the EMF group was exposed to 50 Hz, 28 μT, linear polarized, continuous EMF during the EMF exposure period. HR and HRV data were recorded continuously by using a photoplethysmography sensor. Within‐subject statistical analysis indicated a significant HR deceleration in both the EMF and Sham groups. However, the standard deviation of the NN intervals (SDNN), root mean square of successive differences (RMSSD), low‐frequency (LF), and high‐frequency (HF) powers increased only in the EMF group and remained stable in the Sham group. We also compared the same HRV indices measured during the EMF and Sham periods between the two experimental groups. The between‐subject analysis results demonstrated significantly higher SDNN, RMSSD, LF, and HF values in the EMF group than in the Sham group. The LF/HF ratio did not change significantly within and between groups. On the basis of these results, we concluded that short‐term exposure of the chest region to ELF‐EMF could potentially enhance parasympathetic predominance during the resting condition. Bioelectromagnetics. 2021;42:60–75. © 2020 Bioelectromagnetics Society.  相似文献   

16.
Glioblastoma multiforme (GBM) is a malignant brain cancer that causes high mortality in patients. GBM responds weakly to the common cancer treatments such as chemotherapy and radiotherapy and even surgery. Carboplatin is an alkylating agent widely used to treat cancer. However, resistance to this drug is a common problem in its use in cancer treatment. Concomitant exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) and carboplatin is one unexplored possibility for overcoming this resistance. Indeed, many lines of evidence show that EMF affects cancer cells and drug action. In this study, we evaluated the effect of concomitant administration of carboplatin and EMF (50 Hz, 70 G) and also concomitant administration of carboplatin and static magnetic field (SMF) (70 G) on human glioma cell line (U-87). The results showed that cotreatment reduced the efficiency of carboplatin in U-87 cells, by decreasing caspase-3 in comparison to drug groups. Overall, EMF reduced the apoptotic effect of carboplatin, possibly through a redox regulation mechanism. Therefore, we have to avoid coadministration of magnetic field (MF) and carboplatin in tumor area, because the MF decreased the toxicity of the drug. However, further studies are needed to reveal the action mechanism of this combination therapeutic method.  相似文献   

17.
Introduction: Recent studies have shown that pulsed electromagnetic field (EMF) has therapeutic potential for dementia, but the associated neurobiological effects are unclear. This study aimed to determine the effects of pulsed EMF on Streptozotocin (STZ)-induced dementia rats.Methods: Forty Sprague-Dawley rats were randomly allocated to one of the four groups: (i) control, (ii) normal saline injection (sham group), (iii) STZ injection (STZ group) and (iv) STZ injection with pulsed EMF exposure (PEMF, 10 mT at 20 Hz) (STZ + MF group). Morris water maze was used to assess the learning and memory abilities. Insulin growth factors 1 and 2 (IGF-1 and IGF-2) gene expression were determined by quantitative PCR. Results: The results showed that the mean escape latency in STZ-induced dementia rats was reduced by 66% under the exposure of pulsed EMF. Compared with the STZ group, the swimming distance and the time for first crossing the platform decreased by 55 and 41.6% in STZ + MF group, respectively. Furthermore, the IGF-2 gene expression significantly increased compared to that of the STZ group. Conclusions: Our findings indicate that the pulsed EMF exposure can improve the ability of learning and memory in STZ-induced dementia rats and this effect may be related to the process of IGF signal transduction, suggesting a potential role for the pulsed EMF for the amelioration of cognition impairment.  相似文献   

18.
Ultraviolet radiation has been suggested as a possible contributing cause of amphibian declines around the world. Both laboratory and field studies have demonstrated that exposure to ultraviolet radiation can lead to increased mortality of developing amphibians. Virtually no studies have examined the sub‐lethal effects of ultraviolet on amphibian behavior. In this study, we examine the anti‐predator behavior of three species of amphibians after short‐term exposure to ultraviolet‐B radiation. Toad (Bufo boreas) juveniles that had been exposed to ultraviolet radiation did not respond to chemical extracts from conspecifics and heterospecifics as much as juveniles that had not been exposed. Both newt larvae (Taricha granulosa) that had been exposed to ultraviolet radiation and those that had not been exposed responded to chemical cues from conspecific predators by increasing the amount of time spent in shelter. Frog tadpoles (Rana cascadae) that had been exposed to ultraviolet radiation did not reduce their movement in response to chemical cues from predators as much as tadpoles that had not been exposed. These results indicate that ultraviolet exposure may have important sub‐lethal effects in amphibians that could adversely effect their fitness.  相似文献   

19.
Exposure to repetitive low‐frequency electromagnetic field (LF‐EMF) shows promise as a non‐invasive approach to treat various sensory and neurological disorders. Despite considerable progress in the development of modern stimulation devices, there is a limited understanding of the mechanisms underlying their biological effects and potential targets at the cellular level. A significant impact of electromagnetic field on voltage‐gated calcium channels and downstream signalling pathways has been convincingly demonstrated in many distinct cell types. However, evidence for clear effects on primary sensory neurons that particularly may be responsible for the analgesic actions of LF‐EMF is still lacking. Here, we used F11 cells derived from dorsal root ganglia neurons as an in vitro model of peripheral sensory neurons and three different protocols of high‐induction magnetic stimulation to determine the effects on chemical responsiveness and spontaneous activity. We show that short‐term (<180 sec.) exposure of F11 cells to LF‐EMF reduces calcium transients in response to bradykinin, a potent pain‐producing inflammatory agent formed at sites of injury. Moreover, we characterize an immediate and reversible potentiating effect of LF‐EMF on neuronal spontaneous activity. Our results provide new evidence that electromagnetic field may directly modulate the activity of sensory neurons and highlight the potential of sensory neuron‐derived cell line as a tool for studying the underlying mechanisms at the cellular and molecular level.  相似文献   

20.
The production of spindle disturbances in a human–hamster hybrid (AL) cell line by an electromagnetic field (EMF) with field strength of 90 V/m at a frequency of 900 MHz was studied in greater detail. The experimental setup presented allows investigating whether either the electrical (E) and/or the magnetic (H) field component of EMF can be associated with the effectiveness of the spindle‐disturbing potential. Therefore, both field components of a transversal electromagnetic field (TEM) wave have been separated during exposure of the biological system. This procedure should give more insight on understanding the underlying mechanisms of non‐thermal effects of EMF. A statistical comparison of the proportions of the fractions of ana‐ and telophases with spindle disturbances, obtained for five different exposure conditions with respect to unexposed controls (sham condition), showed that only cells exposed to the H‐field component of the EMF were not different from the control. Therefore, the results of the present study indicate that an exposure of cells to EMF at E‐field strengths of 45 and 90 V/m, as well as to the separated E component of the EMF, induces significant spindle disturbances in ana‐ and telophases of the cell cycle. Bioelectromagnetics 32:291–301, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号