首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key question in the evolution of life history and in evolutionary physiology asks how reproductive and other life-history traits evolve. Genetic variation in reproductive control systems may exist in many elements of the complex inputs that can affect the hypothalamic-pituitary-gonadal (HPG) or reproductive axis. Such variation could include numbers and other traits of secretory cells, the amount and pattern of chemical message released, transport and clearance mechanisms, and the number and other traits of receptor cells. Selection lines created from a natural population of white-footed mice (Peromyscus leucopus) that contains substantial genetic variation in reproductive inhibition in response to short winter daylength (SD) have been used to examine neuroendocrine variation in reproductive timing. We hypothesized that natural genetic variation would be most likely to occur in the inputs to GnRH neurons and/or in GnRH neurons themselves, but not in elements of the photoperiodic pathway that would have pleiotropic effects on nonreproductive functions as well as on reproductive functions. Significant genetic variation has been found in the GnRH neuronal system. The number of GnRH neurons immunoreactive to an antibody to mature GnRH peptide under conditions maximizing detection of stained neurons was significantly heritable in an unselected control (C) line. Furthermore, a selection line that suppresses reproduction in SD (photoperiod responsive, R) had fewer IR-GnRH neurons than a selection line that maintains reproduction in SD (photoperiod nonresponsive, NR). This supports the hypothesis that genetic variation in characteristics of GnRH neurons themselves may be responsible for the observed phenotypic variation in reproduction in SD. The R and NR lines differ genetically in food intake and iodo-melatonin receptor binding, as well as in other characteristics. The latter findings are consistent with the hypothesis that genetic variation occurs in the nutritional and hormonal inputs to GnRH neurons. Genetic variation also exists in the phenotypic plasticity of responses to two combinations of treatments, (1) food and photoperiod, and (2) photoperiod and age, indicating genetic variation in individual norms of reaction within this population. Overall, the apparent multiple sources of genetic variation within this population suggest that there may be multiple alternative combinations of alleles for both the R and NR phenotypes. If that interpretation is correct, we suggest that this offers some support for the evolutionary "potential" hypothesis and is inconsistent with the evolutionary "constraint" and "symmorphosis" hypotheses for the evolution of complex neuroendocrine pathways.  相似文献   

2.
Natural variation in neuroendocrine traits is poorly understood, despite the importance of variation in brain function and evolution. Most rodents in the temperate zones inhibit reproduction and other nonessential functions in short winter photoperiods, but some have little or no reproductive response. We tested whether genetic variability in reproductive seasonality is related to individual differences in the neuronal function of the gonadotropin-releasing hormone network, as assessed by the number and location of mature gonadotropin-releasing hormone-secreting neurons under inhibitory and excitatory photoperiods. The experiments used lines of Peromyscus leucopus previously developed by selection from a wild population. One line contained individuals reproductively inhibited by short photoperiod, and the other line contained individuals nonresponsive to short photoperiod. Expression of mature gonadotropin-releasing hormone (GnRH) immunoreactivity in the brain was detected using SMI-41 antibody in the single-labeled avidin-biotin-peroxidase-complex method. Nonresponsive mice had 50% more immunoreactive GnRH neurons than reproductively inhibited mice in both short- and long-day photoperiods. The greatest differences were in the anterior hypothalamus and preoptic areas. In contrast, we detected no significant within-lines differences in the number or location of immunoreactive GnRH neurons between photoperiod treatments. Our data indicate that high levels of genetic variation in a single wild population for a specific neuronal trait are related to phenotypic variation in a life history trait, i.e., winter reproduction. Variation in GnRH neuronal activity may underlie some of the natural reproductive and life history variation observed in wild populations of P. leucopus. Similar genetic variation in neuronal traits may be present in humans and other species.  相似文献   

3.
Since humans and chimpanzees split from a common ancestor over 6 million years ago, human metabolism has changed dramatically. This change includes adaptations to a high-quality diet, the evolution of an energetically expensive brain, dramatic increases in endurance abilities, and capacity for energy storage in white adipose tissue. Human metabolism continues to evolve in modern human populations in response to local environmental and cultural selective forces. Understanding the nature of these selective forces and the physiological responses during human evolution is a compelling challenge for evolutionary biologists. The complex genetic architecture surrounding metabolic phenotypes indicates that selection probably altered allelic frequencies across many loci in populations experiencing adaptive metabolic change to fit their environment. A recent analysis supports this hypothesis, finding that classic selective sweeps at single loci were rare during the past 250 000 years of human evolution. Detection of selective signatures at multiple loci, as well as exploration of physiological adaptation to environment in humans, will require cross-disciplinary collaboration, including the incorporation of biological pathway analysis. This review explores the Thrifty Genotype Hypothesis, high-altitude adaptation, cold-resistance adaptation, and genetic evidence surrounding these proposed metabolic adaptations in an attempt to clarify current challenges and avenues for future progress.  相似文献   

4.
Humans exhibit seasonal variation in a wide variety of behavioral and physiological processes, and numerous investigators have suggested that this might be because we are sensitive to seasonal variation in day length. The evidence supporting this hypothesis is inconsistent. A new hypothesis is offered here-namely, that some humans indeed are seasonally photoresponsive, but others are not, and that individual variation may be the cause of the inconsistencies that have plagued the study of responsiveness to photoperiod in the past. This hypothesis is examined in relation to seasonal changes in the reproductive activity of humans, and it is developed by reviewing and combining five bodies of knowledge: correlations of human birthrates with photoperiod; seasonal changes in the activity of the neuroendocrine pathway that could link photoperiod to gonadal steroid secretion in humans; what is known about photoperiod, latitude, and reproduction of nonhuman primates; documentation of individual variation in photoresponsiveness in rodents and humans; and what is known about the evolutionary ecology of humans.  相似文献   

5.
This paper reports results obtained from microsatellite DNA analysis of genetic structure for populations of the native fungus Cronartium quercuum f. sp fusiforme infecting loblolly pine (Pinus taeda L.) over much of this host's natural range. Mostly all fusiform rust galls formed under field conditions are produced as a result of infection and colonization by haploid mycelium originating from a single basidiospore of C. quercuum fusiforme. If multiple infections do occur, then only a single haplotype must ultimately dominate and be responsible for gall formation. High levels of microsatellite variability exist in C. quercuum fusiforme and most of this variation occurs within local populations (average 88.4%). A statistically significant proportion, however, is found among populations, and the magnitude of this differentiation is closely associated with geographic distance between populations. Unweighted pair-group mean analysis and principal components analysis both indicate that at least four genetically distinct regional groups of C. quercuum fusiforme exist in the south Atlantic and Gulf coastal plains. In summary, the distribution of genetic variability in C. quercuum fusiforme is consistent with a hypothesis of at least four metapopulations with gene flow occurring less among regions than among populations within regions, and where overall levels of gene migration are related to geographic distance between populations.  相似文献   

6.
The evolution of mammalian brain function depends in part on levels of natural, heritable variation in numbers, location, and function of neurons. However, the nature and amount of natural genetic variation in neural traits and their physiological link to variation in function or evolutionary change are unknown. We estimated the level of within-population heritable variation in the number of gonadotropin-releasing hormone (GnRH) neurons, which play a major role in reproductive regulation, in an unselected outbred population recently derived (<10 generations) from a single natural population of white-footed mice (Peromyscus leucopus, Rafinesque). Young adult male mice exhibited an approximately threefold variation in the number of neurons immunoreactive for GnRH in the brain areas surveyed, as detected using SMI-41 antibody with a single-label avidin-biotin complex method. Consistent with earlier findings of selectable variation in GnRH neurons in this population, the level of genetic variation in this neuronal trait within this single population was high, with broadsense heritability using full-sib analysis estimated at 0.72 (P<0.05). Either weak selection on this trait or environmental variation that results in inconsistent selection on this trait might allow a high level of variation in this population.  相似文献   

7.
As natural selection must act on underlying genetic variation, discovering the number and location of loci under the influence of selection is imperative towards understanding adaptive divergence in evolving populations. Studies employing genome scans have hypothesized that the action of divergent selection should reduce gene flow at the genomic locations implicated in adaptation and speciation among natural populations, yet once 'outlier' patterns of variation have been identified the function and role of such loci needs to be confirmed. We integrated adaptive QTL mapping and genomic scans among diverging sympatric pairs of the lake whitefish (Coregonus clupeaformis) species complex in order to test the hypothesis that differentiation between dwarf and normal ecotypes at growth-associated QTL was maintained by directional selection. We found evidence of significantly high levels of molecular divergence among eight growth QTL where two of the strongest candidate loci under the influence of directional selection exhibited parallel reductions of gene flow over multiple populations.  相似文献   

8.
Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.  相似文献   

9.
Tetushkin EIa 《Genetika》2001,37(8):1029-1045
In the last decades, the concept of human races was considered scientifically unfounded as it was not confirmed by genetic evidence. None of the racial classifications, which strongly differ in the number of races and their composition, reflects actual genetic similarity and genealogy of human populations inferred from variability of classical markers and DNA regions. Moreover, intercontinental ("interracial") variability was shown to be far lower than that within populations: the former constitutes 7 to 10% and the latter, about 85% of the total genetic variation. It is believed that the low level of differentiation of regional population groups contradicts their race status and suggests a recent origin of humans from one ancestral population. The results of studies of various genetic systems are in agreement with last conclusion rejecting the hypothesis of regional continuity. According to this hypothesis, the populations of continents regarded as large races have developed during long evolution from local types of archaic humans, in particular, Neanderthals. Phenotypic similarity of different, sometimes unrelated, populations united into one "race" is explained by strong selection since race-diagnostic traits characterize body surface and thus are directly subjected to the influence of environmental (primarily climatic) factors. It has been recently established that variability of the most important of these traits, body and hair pigmentation, is largely controlled by one locus (MC1R), which accounts for its high evolutionary lability. Other traits used for race identification are also likely to be labile and controlled by major genes. However, the fact that the currently existing race classifications are groundless does not mean that such classifications are impossible in principle. Commonly used argumentation (races do not exist because populations are not genetically separated) does not hold water. A polytypic species is characterized by genetic continuity of allopatric populations rather than the presence of narrow genetic boundaries between them. Borderlines between races are usually conventional and arbitrary. As to intergroup variation in humans, it is indeed low but comparable with that in some other species. There are no obstacles to the development of genetic systematics of human races.  相似文献   

10.
Rowe KC  Heske EJ  Paige KN 《Molecular ecology》2006,15(13):4003-4020
Palaeoecological studies have demonstrated that ecological communities as a whole did not remain stable throughout the climatic fluctuations of the Quaternary. The result is that long-term associations of species cannot be inferred by contemporary associations in ecological communities. Therefore, the evolutionary significance of any contemporary ecological interactions among species and of the biotic community within which species have evolved also cannot be assumed from contemporary conditions. Comparative phylogeographic data provide a method to identify species within ecological communities that have shared biogeographic histories. We present an example of a long-term association between populations of two mammalian species, eastern chipmunks (Tamias striatus) and white-footed mice (Peromyscus leucopus), which are commonly associated with deciduous forest habitats. The distribution of mitochondrial DNA variation in T. striatus and P. leucopus from previously glaciated regions of the eastern United States support the hypothesis that, in at least part of their range, genetic lineages of the two species have expanded from similar population sources since the Last Glacial Maximum. In addition, the spatial concordance of genetic lineages of T. striatus and P. leucopus with the oak-savannah forest formations of Wisconsin and Illinois, suggest that populations associated with this community colonized the area in association with a set of arboreal species that comprise their deciduous forest habitat.  相似文献   

11.
Our understanding of evolutionary mechanisms leading to populationdifferences in mean performance values relies on understandingperformance variation within single populations. Unfortunately,relatively little information about physiological variabilitywithin natural populations of organisms is available. In particular,to begin to understand how physiological traits evolve we needinformation on the extent of physiological variability relatedto the extent of genetic variability over a range of environmentalconditions experienced by individual populations. Clonal organismsmay be particularly well-suited to such studies because theyprovide an opportunity to use replicated genotypes (i.e., clonemates)in controlled experiments. We are using the cosmopolitan seaanemone Haliplanella lineata to explore physiological variancein natural populations. Growth, absorption and routine ratesof oxygen uptake do not vary among three clones from a singlepopulation when measured at 15°C, the approximate midpointin the seasonal range of water temperatures experienced by thispopulation. Broad-sense heritabilities for routine rates ofoxygen consumption and ammonia excretion (0.14 and 0.09, respectively),indicate a relatively low fraction of variance in these physiologicalrates is attributable to genetic variation among five clonesin this population. Although some literature indicates thatsuch low heritabilities may be expected when physiological traitsare measured at environmental mid-range as opposed to extremes,other evidence indicates that it will be difficult to predictthe trend between environmental stress and genetic variancein physiological performance.  相似文献   

12.
Molecular genetic analyses show that introduced populations undergoing biological invasions often bring together individuals from genetically disparate native-range source populations, which can elevate genotypic variation if these individuals interbreed. Differential admixture among multiple native-range sources explains mitochondrial haplotypic diversity within and differentiation among invasive populations of the lizard Anolis sagrei. Our examination of microsatellite variation supports the hypothesis that lizards from disparate native-range sources, identified using mtDNA haplotypes, form genetically admixed introduced populations. Furthermore, within-population genotypic diversity increases with the number of sources and among-population genotypic differentiation reflects disparity in their native-range sources. If adaptive genetic variation is similarly restructured, then the ability of invasive species to adapt to new conditions may be enhanced.  相似文献   

13.
14.
The spider mite Tetranychus evansi is an emerging pest of solanaceous crops worldwide. Like many other emerging pests, its small size, confusing taxonomy, complex history of associations with humans, and propensity to start new populations from small inocula, make the study of its invasion biology difficult. Here, we use recent developments in Approximate Bayesian Computation (ABC) and variation in multi-locus genetic markers to reconstruct the complex historical demography of this cryptic invasive pest. By distinguishing among multiple pathways and timing of introductions, we find evidence for the "bridgehead effect", in which one invasion serves as source for subsequent invasions. Tetranychus evansi populations in Europe and Africa resulted from at least three independent introductions from South America and involved mites from two distinct sources in Brazil, corresponding to highly divergent mitochondrial DNA lineages. Mites from southwest Brazil (BR-SW) colonized the African continent, and from there Europe through two pathways in a "bridgehead" type pattern. One pathway resulted in a widespread invasion, not only to Europe, but also to other regions in Africa, southern Europe and eastern Asia. The second pathway involved the mixture with a second introduction from BR-SW leading to an admixed population in southern Spain. Admixture was also detected between invasive populations in Portugal. A third introduction from the Brazilian Atlantic region resulted in only a limited invasion in Europe. This study illustrates that ABC methods can provide insights into, and distinguish among, complex invasion scenarios. These processes are critical not only in understanding the biology of invasions, but also in refining management strategies for invasive species. For example, while reported observations of the mite and outbreaks in the invaded areas were largely consistent with estimates of geographical expansion from the ABC approach, historical observations failed to recognize the complex pathways involved and the corresponding effects on genetic diversity.  相似文献   

15.
Heart rate variability is an important risk factor for cardiovascular disease and all-cause mortality. The acetylcholine pathway plays a key role in explaining heart rate variability in humans. We assessed whether 443 genotyped and imputed common genetic variants in eight key genes (CHAT, SLC18A3, SLC5A7, CHRNB4, CHRNA3, CHRNA, CHRM2 and ACHE) of the acetylcholine pathway were associated with variation in an established measure of heart rate variability reflecting parasympathetic control of the heart rhythm, the root mean square of successive differences (RMSSD) of normal RR intervals. The association was studied in a two stage design in individuals of European descent. First, analyses were performed in a discovery sample of four cohorts (n = 3429, discovery stage). Second, findings were replicated in three independent cohorts (n = 3311, replication stage), and finally the two stages were combined in a meta-analysis (n = 6740). RMSSD data were obtained under resting conditions. After correction for multiple testing, none of the SNPs showed an association with RMSSD. In conclusion, no common genetic variants for heart rate variability were identified in the largest and most comprehensive candidate gene study on the acetylcholine pathway to date. Future gene finding efforts for RMSSD may want to focus on hypothesis free approaches such as the genome-wide association study.  相似文献   

16.
Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems.  相似文献   

17.
This paper explores the evolutionary implications of the enormous variability that characterizes populations of RNA viruses and retroviruses. It begins by examining the magnitude of genetic variation in both natural and experimental populations. In natural populations, differences arise even within individual infected patients, with the per-site nucleotide diversity at this level ranging from < 1% to 6%. In laboratory populations, two viruses sampled from the same clone differed by ∼0.7% in their fitness. Three different mechanisms that may be important in maintaining viral genetic variability were tested: (1) Fisher's fundamental theorem, to compare the observed rate of fitness change with the extent of fitness-related variation within the same experimental populations; (2) magnitude of genomic mutation rate, to assess whether it correlated with fitness-related variation, as predicted by the mutation-selection balance hypothesis; (3) frequency-dependent selection, which affords rare genotypes an advantage. The paper concludes with a discussion of two evolutionary consequences of variability: the fixation of deleterious mutations by drift in small populations and the role of clonal interference in large ones.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 79 , 17–26.  相似文献   

18.
An analysis of cytoplasmic crossing type variation in Australian populations of Culex quinquefasciatus, a member of the Culex pipiens complex of mosquitoes, revealed high levels of variability causing partial incompatibility between natural populations. Segregating crossing types were commonly found together within sampled sites. No correlation was evident between similarity of crossing type and environmental parameters of the sites, nor distance between sites. The nature of the observed variation did not support the hypothesis of paternally expressed nuclear 'restorer' genes. Such high levels of crossing type variation would be likely to impede attempts to control populations of the Culex pipiens complex using cytoplasmic incompatibility.  相似文献   

19.
Sadaf Farooqi 《Mammalian genome》2014,25(9-10):377-383
Body weight is a highly heritable trait across species. In humans, genetic variation plays a major role in determining the inter-individual differences in susceptibility or resistance to environmental factors which influence energy intake and expenditure. In this review, I discuss how genetic studies have contributed to our understanding of the central pathways that govern energy homeostasis. The study of individuals harboring highly penetrant genetic variants that disrupt the leptin–melanocortin pathway has informed our understanding of the physiological pathways involved in mammalian energy homeostasis.  相似文献   

20.
Bovine tuberculosis (bTB) is an important re-emerging zoonotic disease, causing major economic losses and constraining international trade of animals and their products. Despite eradication programmes, some countries continue to encounter outbreaks, mainly due to wildlife acting as primary hosts or reservoirs. While the genetic component of tuberculosis in humans and cattle is well documented, the role of genetic factors as modulators of bTB resistance remains unclear for natural populations. To address this issue, we investigated the relative contribution of host genetic variability to susceptibility to bTB infection and disease progression in wild boars from southern Spain. We found that genetic heterozygosity is an important predictor of bTB, not only modulating resistance to infection but also influencing containment of disease progression in infected individuals. Our results provide further evidence that host genetic variability plays a central role in natural populations. Testing each marker separately reveals evidence of both general and single-locus associative effects on bTB and several loci reveal high homology to regions of the genome with known immune function. Our results may prove to be crucial for understanding outbreaks of bTB in wildlife that could potentially affect domestic livestock and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号