首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early relaxation in the cardiac cycle is characterized by rapid torsional recoil of the left ventricular (LV) wall. To elucidate the contribution of the transmural arrangement of the myofiber to relaxation, we determined the time course of three-dimensional fiber-sheet strains in the anterior wall of five adult mongrel dogs in vivo during early relaxation with biplane cineangiography (125 Hz) of implanted transmural markers. Fiber-sheet strains were found from transmural fiber and sheet orientations directly measured in the heart tissue. The strain time course was determined during early relaxation in the epicardial, midwall, and endocardial layers referenced to the end-diastolic configuration. During early relaxation, significant circumferential stretch, wall thinning, and in-plane and transverse shear were observed (P < 0.05). We also observed significant stretch along myofibers in the epicardial layers and sheet shortening and shear in the endocardial layers (P < 0.01). Importantly, predominant epicardial stretch along the fiber direction and endocardial sheet shortening occurred during isovolumic relaxation (P < 0.05). We conclude that the LV mechanics during early relaxation involves substantial deformation of fiber and sheet structures with significant transmural heterogeneity. Predominant epicardial stretch along myofibers during isovolumic relaxation appears to drive global torsional recoil to aid early diastolic filling.  相似文献   

2.
It is well known that systolic wall thickening in the inner half of the left ventricular (LV) wall is of greater magnitude than predicted by myofiber contraction alone. Previous studies have related the deformation of the LV wall to the orientation of the laminar architecture. Using this method, wall thickening can be interpreted as the sum of contributions due to extension, thickening, and shearing of the laminar sheets. We hypothesized that the thickening mechanics of the ventricular wall are determined by the structural organization of the underlying tissue, and may not be influenced by factors such as loading and activation sequence. To test this hypothesis, we calculated finite strains from biplane cineradiography of transmural markers implanted in apical (n = 22) and basal (n = 12) regions of the canine anterior LV free wall. Strains were referred to three-dimensional laminar microstructural axes measured by histology. The results indicate that sheet angle is of opposite sign in the apical and basal regions, but absolute value differs only in the subepicardium. During systole, shearing and extension of the laminae contribute the most to wall thickening, accounting for >90% (transmural average) at both apex and base. These two types of deformation are also most prominent during diastolic inflation. Increasing afterload has no effect on the pattern of systolic wall thickening, nor does reversing transmural activation sequence. The pattern of wall thickening appears to be a function of the orientation of the laminar sheets, which vary regionally and transmurally. Thus, acute interventions do not appear to alter the contributions of the laminae to wall thickening, providing further evidence that the structural architecture of the ventricular wall is the dominant factor for its regional mechanical function.  相似文献   

3.
Recently, attention has been focused on comparing left ventricular (LV) endocardial (ENDO) with epicardial (EPI) pacing for cardiac resynchronization therapy. However, the effects of ENDO and EPI lead placement at multiple sites have not been studied in failing hearts. We hypothesized that differences in the improvement of ventricular function due to ENDO vs. EPI pacing in dyssynchronous (DYSS) heart failure may depend on the position of the LV lead in relation to the original activation pattern. In six nonfailing and six failing dogs, electrical DYSS was created by atrioventricular sequential pacing of the right ventricular apex. ENDO was compared with EPI biventricular pacing at five LV sites. In failing hearts, increases in the maximum rate of LV pressure change (dP/dt; r = 0.64), ejection fraction (r = 0.49), and minimum dP/dt (r = 0.51), relative to DYSS, were positively correlated (P < 0.01) with activation time at the LV pacing site during ENDO but not EPI pacing. ENDO pacing at sites with longer activation delays led to greater improvements in hemodynamic parameters and was associated with an overall reduction in electrical DYSS compared with EPI pacing (P < 0.05). These findings were qualitatively similar for nonfailing hearts. Improvement in hemodynamic function increased with activation time at the LV pacing site during ENDO but not EPI pacing. At the anterolateral wall, end-systolic transmural function was greater with local ENDO compared with EPI pacing. ENDO pacing and intrinsic activation delay may have important implications for management of DYSS heart failure.  相似文献   

4.
Perturbations in the normal sequence of ventricular activation can create regions of early and late activation, leading to dysynchronous contraction and areas of dyskinesis. Dyskinesis occurs across the left ventricular (LV) wall, and its presence may have important consequences on cardiac structure and function in normal and failing hearts. Acutely, dyskinesis can trigger inflammation and, in the long term (6 wk and above), leads to LV remodeling. The mechanisms that trigger these changes are unknown. To gain further insight, we used a canine model to evaluate transumural changes in myocardial function and inflammation induced by epicardial LV pacing. The results indicate that 4 h of LV suprathreshold pacing resulted in a 30% local loss of endocardial thickening. Assessment of neutrophil infiltration showed a significant approximately fivefold increase in myeloperoxidase activity in the epicardium versus the midwall/endocardium. Matrix metalloproteinase-9 activity increased ~2 fold in the epicardium and ROS generation increased ~2.5-fold compared with the midwall/endocardium. To determine the effects that electrical current alone has on these end points, a group of animals was subjected to subthreshold pacing. Significant increases were observed only in epicardial myeloperoxidase levels. Thus, the results indicate that transmural dyskinesis induced by suprathreshold epicardial LV activation triggers a localized epicardial inflammatory response, whereas subthreshold stimulation appears to solely induce the trapping of leucocytes. Suprathreshold pacing also induces a loss of endocardial function. These results may have important implications as to the nature of the mechanisms that trigger the inflammatory response and possibly long-term remodeling in the setting of dysynchrony.  相似文献   

5.
Activation of matrix metalloproteinases (MMPs) in the heart is known to facilitate cardiac remodeling and progression to failure. We hypothesized that regional dyskinetic wall motion of the left ventricle would stimulate activation of MMPs. Abnormal wall motion at a target site on the anterior lateral wall of the left ventricle was induced by pacing atrial and ventricular sites of five open-chest anesthetized dogs. Changes in shortening at the left ventricular (LV) pacing site and at a remote site at the anterior base of the left ventricle were monitored with piezoelectric crystals. Simultaneous atrial and ventricular pacing resulted in abnormal motion at the LV pacing site, yielding early shortening and late systolic lengthening, whereas the shortening pattern at the remote site remained unaffected. Assessment of global myocardial MMP activity showed a sevenfold increase in substrate cleavage (P < 0.02) at the LV pacing site relative to the remote site. Gelatin zymography revealed increases in 92-kDa MMP-9 activity and 86-kDa MMP-9 activity at the LV pacing site relative to the remote site, whereas MMP-2 activity was unaffected. Abnormal wall motion was associated with increases in collagen degradation (approximately 2-fold; P < 0.03), plasmin activity (approximately 1.5-fold; P < 0.05), nitrotyrosine levels (approximately 20-fold; P = 0.05), and inflammatory infiltrate (approximately 2-fold; P < 0.02) relative to the remote site. Results indicate that regional dyskinesis induced by epicardial activation is sufficient to stimulate significant MMP activity in the heart, suggesting that abnormal wall motion is a stimulus for MMP activation.  相似文献   

6.
In an attempt to provide a better understanding of our finding that regions with contracting left ventricular myofibers need not develop a significant transmural systolic wall thickening gradient, the analytic approach of Costa et al. was applied to the four-dimensional dynamic data obtained 1 and 8 wk after surgical implantation of transmural radiopaque beads in the lateral equatorial left ventricular wall in seven ovine hearts. Quantitative histology of tissue blocks demonstrated that fiber angles varied linearly across the wall in this region from -37 degrees in the subepicardium to +18 degrees in the subendocardium. Sheet angles exhibited a pleated-sheet behavior, alternating sign from subepicardium to subendocardium. From end diastole (reference configuration) to end systole (deformed configuration), fiber strain was uniformly negative, sheet extension and sheet thickening were uniformly positive, and sheet-normal shear contributed to wall thickening at all wall depths. Subepicardial radial wall thickening increased significantly from week 1 to week 8, with significant increases in the contributions from subepicardial sheet extension and sheet-normal shear. At 1 and 8 wk, the contribution of sheet-normal shear to wall thickening was substantial at all transmural depths; the contribution of sheet extension to wall thickening was greatest in the subepicardium and least in the subendocardium, and the contribution of sheet thickening to wall thickening was greatest in the subendocardium and least in the subepicardium. A mechanistic model is proposed that provides a working hypothesis that a selective decrease in subepicardial intercellular matrix stiffness is responsible for elimination of the transmural wall thickening gradient 1-8 wk after marker implantation surgery.  相似文献   

7.
The ventricular myocardium consists of a syncytium of myocytes organized into branching, transmurally oriented laminar sheets approximately four cells thick. When systolic deformation is expressed in an axis system determined by the anatomy of the laminar architecture, laminar sheets of myocytes shear and laterally extend in an approximately radial direction. These deformations account for ~90% of normal systolic wall thickening in the left ventricular free wall. In the present study, we investigated whether the changes in systolic and diastolic function of the sheets were sensitive to alterations in systolic and diastolic load. Our results indicate that there is substantial reorientation of the laminar architecture during systole and diastole. Moreover, this reorientation is both site and load dependent. Thus as end-diastolic pressure is increased and the left ventricular wall thins, sheets shorten and rotate away from the radial direction due to transverse shearing, opposite of what occurs in systole. Both mechanisms of thickening contribute substantially to normal left ventricular wall function. Whereas the relative contributions of shear and extension are comparable at the base, sheet shear is the predominant factor at the apex. The magnitude of shortening/extension and shear increases with preload and decreases with afterload. These findings underscore the essential contribution of the laminar myocardial architecture for normal ventricular function throughout the cardiac cycle.  相似文献   

8.
Laminar, or sheet, architecture of the left ventricle (LV) is a structural basis for normal systolic and diastolic LV dynamics, but transmural sheet orientations remain incompletely characterized. We directly measured the transmural distribution of sheet angles in the ovine anterolateral LV wall. Ten Dorsett-hybrid sheep hearts were perfusion fixed in situ with 5% buffered glutaraldehyde at end diastole and stored in 10% formalin. Transmural blocks of myocardial tissue were excised, with the edges cut parallel to local circumferential, longitudinal, and radial axes, and sliced into 1-mm-thick sections parallel to the epicardial tangent plane from epicardium to endocardium. Mean fiber directions were determined in each section from five measurements of fiber angles. Each section was then cut transverse to the fiber direction, and five sheet angles (beta) were measured and averaged. Mean fiber angles progressed nearly linearly from -41 degrees (SD 11) at the epicardium to +42 degrees (SD 16) at the endocardium. Two families of sheets were identified at approximately +45 degrees (beta(+)) and -45 degrees (beta(-)). In the lateral region (n = 5), near the epicardium, sheets belonged to the beta(+) family; in the midwall, to the beta(-) family; and near the endocardium, to the beta(+) family. This pattern was reversed in the basal anterior region (n = 4). Sheets were uniformly beta(-) over the anterior papillary muscle (n = 2). These direct measurements of sheet angles reveal, for the first time, alternating transmural families of predominant sheet angles. This may have important implications in understanding wall mechanics in the normal and the failing heart.  相似文献   

9.
The constant-volume property of contracting cardiac muscle has been invoked in models of heart wall mechanics that predict that systolic subendocardial left ventricular (LV) wall thickening must significantly exceed subepicardial thickening. To examine this prediction, we implanted arrays of radiopaque markers to measure lateral equatorial wall transmural strains and global and regional LV geometry in seven sheep and studied the four-dimensional dynamics of these arrays using biplane videofluoroscopy (60 Hz) in anesthetized intact animals 1 and 8 wk after surgery. A transmural gradient of systolic lateral wall thickening was observed at 1 wk (P = 0.009; linear regression) but was no longer present at 8 wk (P = 0.243). Referenced to end diastole, group mean (+/-SD) end-systolic radial subepicardial, midwall, and subendocardial wall thickening strains were, respectively, 0.08 +/- 0.08, 0.14 +/- 0.08, and 0.22 +/- 0.12 at 1 wk and 0.19 +/- 0.07 (P = 0.02; 1 vs. 8 wk), 0.20 +/- 0.04, and 0.23 +/- 0.07 at 8 wk. With the exception of an 8-ml (7%) increase in end-diastolic volume (P = 0.04) from 1 to 8 wk, LV shape and hemodynamics were otherwise unchanged. We conclude that equivalent hemodynamics can be generated by the left ventricle with or without a transmural gradient of systolic wall thickening in this region; thus such a gradient is unlikely to be a fundamental property of the contracting LV myocardium. We discuss some implications of these findings regarding mechanisms involved in systolic wall thickening.  相似文献   

10.
Ischemia depresses tissue excitability more rapidly in the ventricular epicardium than in the endocardium. We hypothesized that this would provide the substrate for transmural reentry originating in the epicardium. We mapped transmural conduction in isolated and perfused wedges taken from canine left ventricles during global ischemia while pacing alternately between the epicardium and endocardium. Ischemia reduced conduction velocity more in the epicardium than in the endocardium. We observed that the epicardial-initiated activation penetrated the ventricular wall transmurally while failing to conduct laterally along the epicardium, then conducted laterally along the endocardium and midmyocardium, and reentered the epicardium in 9 of 16 wedges during epicardial stimulation after 600 +/- 182 s of ischemia. Endocardial stimulation applied immediately before or after the epicardial stimulation initiated activation that spread quickly along the endocardium and then transmurally to the epicardium without reentry in six of the nine wedges. The transmural asymmetric conduction was not observed in four separate wedges after the endocardium was removed. Therefore, ischemia-induced transmural gradient of excitability provided the substrate for reentry during epicardial stimulation.  相似文献   

11.
Increased glucose utilization and regional differences in contractile function are well-known alterations of the failing heart and play an important pathophysiological role. We tested whether, similar to functional derangement, changes in glucose uptake develop following a regional pattern. Heart failure was induced in 13 chronically instrumented minipigs by pacing the left ventricular (LV) free wall at 180 beats/min for 3 wk. Regional changes in contractile function and stress were assessed by magnetic resonance imaging, whereas regional flow and glucose uptake were measured by positron emission tomography utilizing, respectively, the radiotracers [(13)N]ammonia and (18)F-deoxyglucose. In heart failure, LV end-diastolic pressure was 20 +/- 4 mmHg, and ejection fraction was 35 +/- 4% (all P < 0.05 vs. control). Sustained pacing-induced dyssynchronous LV activation caused a more pronounced decrease in LV systolic thickening (7.45 +/- 3.42 vs. 30.62 +/- 8.73%, P < 0.05) and circumferential shortening (-4.62 +/- 1.0 vs. -7.33 +/- 1.2%, P < 0.05) in the anterior/anterior-lateral region (pacing site) compared with the inferoseptal region (opposite site). Conversely, flow was reduced significantly by approximately 32% compared with control and was lower in the opposite site region. Despite these nonhomogeneous alterations, regional end-systolic wall stress was uniformly increased by 60% in the failing LV. Similar to wall stress, glucose uptake markedly increased vs. control (0.24 +/- 0.004 vs. 0.07 +/- 0.01 micromol x min(-1) x g(-1), P < 0.05), with no significant regional differences. In conclusion, high-frequency pacing of the LV free wall causes a dyssynchronous pattern of contraction that leads to progressive cardiac failure with a marked mismatch between increased glucose uptake and regional contractile dysfunction.  相似文献   

12.
Although previous studies report a reduction in myocardial volume during systole, myocardial volume changes during the cardiac cycle have not been quantitatively analyzed with high spatiotemporal resolution. We studied the time course of myocardial volume in the anterior mid-left ventricular (LV) wall of normal canine heart in vivo (n = 14) during atrial or LV pacing using transmurally implanted markers and biplane cineradiography (8 ms/frame). During atrial pacing, there was a significant transmural gradient in maximum volume decrease (4.1, 6.8, and 10.3% at subepi, midwall, and subendo layer, respectively, P = 0.002). The rate of myocardial volume increase during diastole was 4.7 +/- 5.8, 6.8 +/- 6.1, and 10.8 +/- 7.7 ml.min(-1).g(-1), respectively, which is substantially larger than the average myocardial blood flow in the literature measured by the microsphere method (0.7-1.3 ml.min(-1).g(-1)). In the early activated region during LV pacing, myocardial volume began to decrease before the LV pressure upstroke. We conclude that the volume change is greater than would be estimated from the known average transmural blood flow. This implies the existence of blood-filled spaces within the myocardium, which could communicate with the ventricular lumen. Our data in the early activated region also suggest that myocardial volume change is caused not by the intramyocardial tissue pressure but by direct impingement of the contracting myocytes on the microvasculature.  相似文献   

13.
Dynamic changes of myocardial fiber and sheet structure are key determinants of regional ventricular function. However, quantitative characterization of the contraction-related changes in fiber and sheet structure has not been reported. The objective of this study was to quantify cardiac fiber and sheet structure at selected phases of the cardiac cycle. Diffusion tensor MRI was performed on isolated, perfused Sprague-Dawley rat hearts arrested or fixed in three states as follows: 1) potassium arrested (PA), which represents end diastole; 2) barium-induced contracture with volume (BV+), which represents isovolumic contraction or early systole; and 3) barium-induced contracture without volume (BV-), which represents end systole. Myocardial fiber orientations at the base, midventricle, and apex were determined from the primary eigenvectors of the diffusion tensor. Sheet structure was determined from the secondary and tertiary eigenvectors at the same locations. We observed that the transmural distribution of the myofiber helix angle remained unchanged as contraction proceeded from PA to BV+, but endocardial and epicardial fibers became more longitudinally orientated in the BV- group. Although sheet structure exhibited significant regional variations, changes in sheet structure during myocardial contraction were relatively uniform across regions. The magnitude of the sheet angle, which is an index of local sheet slope, decreased by 23 and 44% in BV+ and BV- groups, respectively, which suggests more radial orientation of the sheet. In summary, we have shown for the first time that geometric changes in both sheet and fiber orientation provide a substantial mechanism for radial wall thickening independent of active components due to myofiber shortening. Our results provide direct evidence that sheet reorientation is a primary determinant of myocardial wall thickening.  相似文献   

14.
Cardiac resynchronization therapy (CRT) is a proven treatment for heart failure but ~30% of patients appear to not benefit from the therapy. Left ventricular (LV) endocardial and multisite epicardial [triventricular (TriV)] pacing have been proposed as alternatives to traditional LV transvenous epicardial pacing, but no study has directly compared the hemodynamic effects of these approaches. Left bundle branch block ablation and repeated microembolizations were performed in dogs to induce electrical dysynchrony and to reduce LV ejection fraction to <35%. LVdP/dt(max) and other hemodynamic indexes were measured with a conductance catheter during LV epicardial, LV endocardial, biventricular (BiV) epicardial, BiV endocardial, and TriV pacing performed at three atrioventricular delays. LV endocardial pacing was obtained with a clinically available pacing system. The optimal site was defined as the site that increased dP/dt(max) by the largest percentage. Implantation of the endocardial lead was feasible in all canines (n = 8) without increased mitral regurgitation seen with transesophageal echocardiography and with full access to the different LV endocardial pacing sites. BiV endocardial pacing increased dP/dt(max) more than BiV epicardial and TriV pacing on average (P < 0.01) and at the optimal site (P < 0.01). There were no significant differences between BiV epicardial and TriV pacing. BiV endocardial pacing was superior to BiV epicardial and to TriV pacing in terms of acute hemodynamic response. Further investigation is needed to confirm the chronic benefit of this approach in humans.  相似文献   

15.
Regional nonuniformity is a feature of both diseased and normal left ventricles (LV). With the use of magnetic resonance (MR) myocardial tagging, we performed three-dimensional strain analysis on 87 healthy adults in local cardiac and fiber coordinate systems (radial, circumferential, longitudinal, and fiber strains) to characterize normal nonuniformities and to test the validity of wall thickening as a parameter of regional function. Regional morphology included wall thickness and radii of curvature measurements. With respect to transmural nonuniformity, subendocardial strains exceeded subepicardial strains. Going from base to apex, wall thickness and circumferential radii of curvature decreased, whereas longitudinal radii of curvature increased. All of the strains increased from LV base to apex, resulting in a higher ejection fraction (EF) at the apex than at the base (70.9 +/- 0.4 vs. 62.4 +/- 0.4%; means +/- SE, P < 0.0001). When we looked around the circumference of the ventricle, the anterior part of the LV was the flattest and thinnest and showed the largest wall thickening (46.6 +/- 1.2%) but the lowest EF (64.7 +/- 0.5%). The posterior LV wall was thicker, more curved, and showed a lower wall thickening (32.8 +/- 1.0%) but a higher EF (71.3 +/- 0.5%). The regional contribution of the LV wall to the ejection of blood is thus highly variable and is not fully characterized by wall thickening alone. Differences in regional LV architecture and probably local stress are possible explanations for this marked functional nonuniformity.  相似文献   

16.
Cardiac resynchronization therapy has been most typically achieved by biventricular stimulation. However, left ventricular (LV) free-wall pacing appears equally effective in acute and chronic clinical studies. Recent data suggest electrical synchrony measured epicardially is not required to yield effective mechanical synchronization, whereas endocardial mapping data suggest synchrony (fusion with intrinsic conduction) is important. To better understand this disparity, we simultaneously mapped both endocardial and epicardial electrical activation during LV free-wall pacing at varying atrioventricular delays (AV delay 0-150 ms) in six normal dogs with the use of a 64-electrode LV endocardial basket and a 128-electrode epicardial sock. The transition from dyssynchronous LV-paced activation to synchronous RA-paced activation was studied by constructing activation time maps for both endo- and epicardial surfaces as a function of increasing AV delay. The AV delay at the transition from dyssynchronous to synchronous activation was defined as the transition delay (AVt). AVt was variable among experiments, in the range of 44-93 ms on the epicardium and 47-105 ms on the endocardium. Differences in endo- and epicardial AVt were smaller (-17 to +12 ms) and not significant on average (-5.0 +/- 5.2 ms). In no instance was the transition to synchrony complete on one surface without substantial concurrent transition on the other surface. We conclude that both epicardial and endocardial synchrony due to fusion of native with ventricular stimulation occur nearly concurrently. Assessment of electrical epicardial delay, as often used clinically during cardiac resynchronization therapy lead placement, should provide adequate assessment of stimulation delay for inner wall layers as well.  相似文献   

17.
To test the hypothesis that the abnormal ventricular geometry in failing hearts may be accounted for by regionally selective remodeling of myocardial laminae or sheets, we investigated remodeling of the transmural architecture in chronic volume overload induced by an aortocaval shunt. We determined three-dimensional finite deformation at apical and basal sites in left ventricular anterior wall of six dogs with the use of biplane cineradiography of implanted markers. Myocardial strains at end diastole were measured at a failing state referred to control to describe remodeling of myofibers and sheet structures over time. After 9 +/- 2 wk (means +/- SE) of volume overload, the myocardial volume within the marker sets increased by >20%. At 2 wk, the basal site had myofiber elongation (0.099 +/- 0.030; P <0.05), whereas the apical site did not [P=not significant (NS)]. Sheet shear at the basal site increased progressively toward the final study (0.040 +/- 0.003 at 2 wk and 0.054 +/- 0.021 at final; both P <0.05), which contributed to a significant increase in wall thickness at the final study (0.181 +/- 0.047; P < 0.05), whereas the apical site did not (P=NS). We conclude that the remodeling of the transmural architecture is regionally heterogeneous in chronic volume overload. The early differences in fiber elongation seem most likely due to a regional gradient in diastolic wall stress, whereas the late differences in wall thickness are most likely related to regional differences in the laminar architecture of the wall. These results suggest that the temporal progression of ventricular remodeling may be anatomically designed at the level of regional laminar architecture.  相似文献   

18.
Abnormal electrical activation of the left ventricle results in mechanical dyssynchrony, which is in part characterized by early stretch of late-activated myofibers. To describe the pattern of deformation during "prestretch" and gain insight into its causes and sequelae, we implanted midwall and transmural arrays of radiopaque markers into the left ventricular anterolateral wall of open-chest, isoflurane-anesthetized, adult mongrel dogs. Biplane cineradiography (125 Hz) was used to determine the time course of two- and three-dimensional strains while pacing from a remote, posterior wall site. Strain maps were generated as a function of time. Electrical activation was assessed with bipolar electrodes. Posterior wall pacing generated prestretch at the measurement site, which peaked 44 ms after local electrical activation. Overall magnitudes and transmural gradients of strain were reduced when compared with passive inflation. Fiber stretch was larger at aortic valve opening compared with end diastole (P < 0.05). Fiber stretch at aortic valve opening was weakly but significantly correlated with local activation time (r(2) = 0.319, P < 0.001). With a short atrioventricular delay, fiber lengths were not significantly different at the time of aortic valve opening during ventricular pacing compared with atrial pacing. However, ejection strain did significantly increase (P < 0.05). We conclude that the majority of fiber stretch occurs after local electrical activation and mitral valve closure and is different from passive inflation. The increased shortening of these regions appears to be because of a reduced afterload rather than an effect of length-dependent activation in this preparation.  相似文献   

19.
It is well established that cardiac resynchronisation therapy (CRT) using biventricular pacing prolongs survival by its effects on pump failure. The rate of sudden cardiac death in patients undergoing CRT, however, remains high. Animal and human studies have shown that reversal of normal sequence of myocardial activation during epicardial pacing, as applied during CRT, increases the transmural dispersion of repolarisation (TDR), a substrate for ventricular arrhythmias. Cohort studies in humans suggest that CRT has a differential effect on the arrhythmogenic substrate, antiarrhythmic in some and proarrhythmic in others. This review the focuses on the possibility that CRT may, under certain circumstances, promote arrhythmogenesis.  相似文献   

20.
The vertebrate embryonic ventricle transforms from a smooth-walled single tube to trabeculated right ventricular (RV) and left ventricular (LV) chambers during cardiovascular morphogenesis. We hypothesized that ventricular contraction patterns change from globally isotropic to chamber-specific anisotropic patterns during normal morphogenesis and that these deformation patterns are influenced by experimentally altered mechanical load produced by chronic left atrial ligation (LAL). We measured epicardial RV and LV wall strains during normal development and left heart hypoplasia produced by LAL in Hamburger-Hamilton stage 21, 24, 27, and 31 chick embryos. Normal RV contracted isotropically until stage 24 and then contracted preferentially in the circumferential direction. Normal LV contracted isotropically at stage 21, preferentially in the longitudinal direction at stages 24 and 27, and then in the circumferential direction at stage 31. LAL altered both RV and LV strain patterns, accelerated the onset of preferential RV circumferential strain patterns, and abolished preferential LV longitudinal strain (P < 0.05 vs. normal). Mature patterns of anisotropic RV and LV deformation develop coincidentally with morphogenesis, and changes in these deformation patterns reflect altered cardiovascular function and/or morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号