首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The lamina terminalis is situated in the anterior wall of the third ventricle and plays a major role in fluid and electrolyte homeostasis and cardiovascular regulation. The present study examined whether the effects of intracerebroventricular infusion of hypertonic saline and ANG II on renal sympathetic nerve activity (RSNA) were mediated by the lamina terminalis. In control, conscious sheep (n = 5), intracerebroventricular infusions of 0.6 M NaCl (1 ml/h for 20 min) and ANG II (10 nmol/h for 30 min) increased mean arterial pressure (MAP) by 6 +/- 1 (P < 0.001) and 14 +/- 3 mmHg (P < 0.001) and inhibited RSNA by 80 +/- 6 (P < 0.001) and 89 +/- 7% (P < 0.001), respectively. Both treatments reduced plasma renin concentration (PRC). Intracerebroventricular infusion of artificial cerebrospinal fluid (1 ml/h for 30 min) had no effect. In conscious sheep with lesions of the lamina terminalis (n = 6), all of the responses to intracerebroventricular hypertonic saline and ANG II were abolished. In conclusion, the effects of intracerebroventricular hypertonic saline and ANG II on RSNA, PRC, and MAP depend on the integrity of the lamina terminalis, indicating that this site plays an essential role in coordinating the homeostatic responses to changes in brain Na(+) concentration.  相似文献   

2.
The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep (n = 6), intravenous infusion of ANG II (2 microg/h) gradually increased mean arterial pressure (MAP) from 82 +/- 3 to 96 +/- 5 mmHg over 7 days (P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 +/- 6.4 to 38.2 +/- 6.7 ml.min(-1).mmHg(-1) (P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 +/- 1 mmHg in the control period and by 7 +/- 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT(1) receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 microg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.  相似文献   

3.
Small volume hypertonic saline resuscitation can be beneficial for treating hemorrhagic shock, but the mechanism remains poorly defined. We investigated the effects of hemorrhagic resuscitation with hypertonic saline on cardiac (CSNA) and renal sympathetic nerve activity (RSNA) and the resulting cardiovascular consequences. Studies were performed on conscious sheep instrumented with cardiac (n=7) and renal (n=6) sympathetic nerve recording electrodes and a pulmonary artery flow probe. Hemorrhage (20 ml/kg over 20 min) caused hypotension and tachycardia followed by bradycardia, reduced cardiac output, and abolition of CSNA and RSNA. Resuscitation with intravenous hypertonic saline (1.2 mol/l at 2 ml/kg) caused rapid, dramatic increases in mean arterial pressure, heart rate, and CSNA, but had no effect on RSNA. In contrast, isotonic saline resuscitation (12 ml/kg) had a much delayed and smaller effect on CSNA, less effect on mean arterial pressure, no effect on heart rate, but stimulated RSNA, although the plasma volume expansion was similar. Intracarotid infusion of hypertonic saline (1 ml/min bilaterally, n=5) caused similar changes to intravenous administration, indicating a cerebral component to the effects of hypertonic saline. In further experiments, contractility (maximum change in pressure over time), heart rate, and cardiac output increased significantly more with intravenous hypertonic saline (2 ml/kg) than with Gelofusine (6 ml/kg) after hemorrhage; the effects of hypertonic saline were attenuated by the β-receptor antagonist propranolol (n=6). These results demonstrate a novel neural mechanism for the effects of hypertonic saline resuscitation, comprising cerebral stimulation of CSNA by sodium chloride to improve cardiac output by increasing cardiac contractility and rate and inhibition of RSNA.  相似文献   

4.
Pressor responses to increases in cerebrospinal fluid (CSF) sodium in Wistar rats and to high salt intake in spontaneously hypertensive rats (SHR) involve both brain ouabainlike activity ("ouabain") and the brain renin-angiotensin system (RAS). Because some of the effects of "ouabain" are mediated by the median preoptic nucleus (MnPO) and this nucleus contains all elements of the RAS, the present study assessed possible interactions of "ouabain" and ANG II in this nucleus. In conscious Wistar rats, injection of ANG II into the MnPO significantly increased mean arterial pressure (MAP) and heart rate (HR). This response was not affected by pretreatment with a subpressor dose of ouabain. MAP and HR increases by ouabain in the MnPO were significantly attenuated by MnPO pretreatment with losartan. In Wistar rats, losartan in the MnPO also abolished pressor and HR responses to intracerebroventricular 0.3 M NaCl and attenuated MAP and HR responses to intracerebroventricular ouabain. Five weeks of a high-salt diet in SHRs resulted in exacerbation of hypertension and increased responses to air-jet stress and intracerebroventricular guanabenz. Losartan injected into the MnPO reversed the salt-sensitive component of the hypertension and normalized the depressor response to guanabenz but did not change responses to air-jet stress. We conclude that in the MnPO, ANG II via AT(1) receptors mediates cardiovascular responses to an acute increase in CSF sodium as well as the chronic pressor responses to high sodium intake in SHR.  相似文献   

5.
Studies were performed to determine whether the central nervous system actions of corticotropin-releasing factor (CRF) and angiotensin II (ANG II) on systemic arterial pressure are mediated, in part, through changes in cardiac output (CO). Changes in CO after intracerebroventricular administration of ANG II and CRF were assessed in conscious unrestrained rats bearing pulsed Doppler flow probes on the ascending aorta. Intracerebroventricular injection of CRF (0.15 nmol) increased arterial pressure (15-20 mmHg), heart rate (70-100 beats/min), and CO (25-35%) without significantly affecting total peripheral resistance. Intracerebroventricular injection of ANG II (0.1 nmol) produced similar elevations of arterial pressure (15-20 mmHg). However, the ANG II-induced pressor response was attended by significant decreases in heart rate (20 beats/min) and CO (10-15%) and significant increases in total peripheral resistance (30-40%). The results of these studies demonstrate that CO, as assessed by pulsed Doppler flow probe methodology, may be influenced significantly and differentially by central nervous system administration of CRF and ANG II.  相似文献   

6.
The role of ANG II in the arterial baroreflex control of renal sympathetic nerve activity (RSNA) in eight term-pregnant (P) and eight nonpregnant (NP) conscious rabbits was assessed using sequential intracerebroventricular and intravenous infusions of losartan, an AT1 receptor antagonist. The blood pressure (BP)-RSNA relationship was generated by sequential inflations of aortic and vena caval perivascular occluders. Pregnant rabbits exhibited a lower maximal RSNA reflex gain (-44%) that was primarily due to a reduction in the maximal sympathetic response to hypotension (P, 248 +/- 20% vs. NP, 357 +/- 41% of rest RSNA, P < 0.05). Intracerebroventricular losartan decreased resting BP in P (by 9 +/- 3 mmHg, P < 0.05) but not NP rabbits, and had no effect on the RSNA baroreflex in either group. Subsequent intravenous losartan decreased resting BP in NP and further decreased BP in P rabbits, but had no significant effect on the maximal RSNA reflex gain. ANG II may have an enhanced role in the tonic support of BP in pregnancy, but does not mediate the gestational depression in the arterial baroreflex control of RSNA in rabbits.  相似文献   

7.
Na and water intakes of Na-depleted sheep are influenced by changes in cerebral Na concentration. The effect of intracerebroventricular infusion of somatostatin or losartan, the ANG II type 1 receptor antagonist, on the Na appetite and thirst of Na-depleted sheep during infusions that decrease (intracerebroventricular hypertonic mannitol) or increase (intracerebroventricular or systemic hypertonic NaCl) cerebral Na concentration was investigated. Na intake was increased but water intake was unchanged during intracerebroventricular infusion of hypertonic mannitol. The increased Na appetite caused by intracerebroventricular infusion of hypertonic mannitol was decreased by concurrent intracerebroventricular infusion of either somatostatin or losartan, with somatostatin being most effective. Water intake was increased during intracerebroventricular infusion of hypertonic mannitol and somatostatin. Na intake was decreased and water intake was increased during systemic or intracerebroventricular infusion of hypertonic NaCl. Intracerebroventricular infusion of losartan blocked both (Na and water intake), whereas somatostatin did not influence either of these changes in intake. The results further consolidate a role for somatostatin and ANG II in the central mechanisms controlling Na appetite and thirst of sheep.  相似文献   

8.
Chronic heart failure is often associated with sympathoexcitation and blunted arterial baroreflex function. These phenomena have been causally linked to elevated central ANG II mechanisms. Recent studies have shown that NAD(P)H oxidase-derived reactive oxygen species (ROS) are important mediators of ANG II signaling and therefore might play an essential role in these interactions. The aims of this study were to determine whether central subchronic infusion of ANG II in normal animals has effects on O2- production and expression of NAD(P)H oxidase subunits as well as ANG II type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM). Twenty-four male New Zealand White rabbits were divided into four groups and separately received a subchronic intracerebroventricular infusion of saline alone, ANG II alone, ANG II with losartan, and losartan alone for 1 wk. On day 7 of intracerebroventricular infusion, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) values were recorded, and arterial baroreflex sensitivity was evaluated while animals were in the conscious state. We found that ANG II significantly increased baseline RSNA (161.9%; P < 0.05), mRNA and protein expression of AT1 receptors (mRNA, 66.7%; P < 0.05; protein, 85.1%; P < 0.05), NAD(P)H oxidase subunits (mRNA, 120.0-200.0%; P < 0.05; protein, 90.9-197.0%; P < 0.05), and O2- production (83.2%; P < 0.05) in the RVLM. In addition, impaired baroreflex control of HR (Gain(max) reduced by 48.2%; P < 0.05) and RSNA (Gain(max) reduced by 53.6%; P < 0.05) by ANG II was completely abolished by losartan. Losartan significantly decreased baseline RSNA (-49.5%; P < 0.05) and increased baroreflex control of HR (Gain(max) increased by 64.8%; P < 0.05) and RSNA (Gain(max) increased by 67.9%; P < 0.05), but had no significant effects on mRNA and protein expression of AT1 receptor and NAD(P)H oxidase subunits and O2- production in the RVLM. These data suggest that in normal rabbits, NAD(P)H oxidase-derived ROS play an important role in the modulation of sympathetic activity and arterial baroreflex function by subchronic central treatment of exogenous ANG II via AT1 receptors.  相似文献   

9.
Sympathetic hyperactivity and hypertension caused by chronic treatment with ouabain or sodium-rich artificial cerebrospinal fluid (aCSF) can be prevented by central administration of an angiotensin type 1 (AT(1)) receptor blocker. In the present study, we assessed whether, in Wistar rats, chronic peripheral treatment with the AT(1) receptor blockers losartan and embusartan can exert sufficient central effects to prevent these central effects of ouabain and sodium. Losartan or embusartan (both at 100 mg x kg(-1) x day(-1)) were given subcutaneously once daily. Ouabain (50 microg/day) was infused subcutaneously, and sodium-rich aCSF (1.2 M Na(+), 5 microl/h) was infused intracerebroventricularly, both by osmotic minipump for 13-14 days. The mean arterial pressure (MAP) at rest and in response to air stress and intracerebroventricularly injection of guanabenz (75 microg/7.5 microl), ANG II (30 ng/3 microl), and ouabain (0.5 microg/2 microl) were then measured. In control rats, chronic treatment with ouabain subcutaneously and hypertonic saline intracerebroventricularly both increased baseline MAP by 20-25 mmHg and enhanced twofold the pressor responses to air stress and depressor responses to the alpha(2)-adrenoceptor agonist guanabenz. Simultaneous treatment with losartan or embusartan fully prevented hypertension, maintained normal responses to air stress and guanabenz, and attenuated pressor responses to acute intracerebroventricular injection of ANG II and ouabain. We concluded that peripheral administration of losartan as well as embusartan can cause sufficient central effects to prevent the sympathetic hyperactivity and hypertension induced by chronic peripheral ouabain and central sodium.  相似文献   

10.
Central nervous system (CNS) effects of mineralocorticoids participate in the development of salt-sensitive hypertension. In the brain, mineralocorticoids activate amiloride-sensitive sodium channels, and we hypothesized that this would lead to increased release of ouabainlike compounds (OLC) and thereby sympathetic hyperactivity and hypertension. In conscious Wistar rats, intracerebroventricular infusion of aldosterone at 300 or 900 ng/h in artificial cerebrospinal fluid (aCSF) with 0.145 M Na+ for 2 h did not change baseline mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), or heart rate (HR). Intracerebroventricular infusion of aCSF containing 0.16 M Na+ (versus 0.145 M Na+ in regular aCSF) did not change MAP or RSNA, but significant increases in MAP, RSNA, and HR were observed after intracerebroventricular infusion of aldosterone at 300 ng/h for 2 h. Intracerebroventricular infusion of aCSF containing 0.3 M Na+ increased MAP, RSNA, and HR significantly more after intracerebroventricular infusion of aldosterone versus vehicle. After intracerebroventricular infusion of aldosterone, the MAP, RSNA, and HR responses to intracerebroventricular infusion of aCSF containing 0.16 M Na+ were blocked by blockade of brain OLC with intracerebroventricular infusion of Fab fragments or of brain sodium channels with intracerebroventricular benzamil. Chronic intracerebroventricular infusion of aldosterone at 25 ng/h in aCSF with 0.15 M Na+ for 2 wk increased MAP by 15-20 mmHg and increased hypothalamic OLC by 30% and pituitary OLC by 60%. Benzamil blocked all these responses to aldosterone. These findings indicate that in the brain, mineralocorticoids activate brain sodium channels, with small increases in CSF Na+ leading to increases in brain OLC, sympathetic outflow, and blood pressure.  相似文献   

11.
Losartan (DuP 753) and PD123177 are nonpeptide angiotensin (ANG) receptor ligands for subtypes of ANG II receptors ANG II-1 and ANG II-2, respectively. We examined the effects of losartan and PD123177 on dose - mean arterial pressure (MAP) response curves for ANG II and ANG III in eight groups (n = 6 each) of conscious rats. Saline (0.9% NaCl), losartan (1 x 10(-6) and 9 x 10(-6) mol/kg), and PD123177 (2 x 10(-5) mol/kg) were i.v. bolus injected 15 min before the construction of ANG II dose - response curves in groups I, II, III, and IV, respectively. Groups V-VIII were treated similarly to I-IV except that ANG III was given in place of ANG II. Losartan dose dependently shifted the dose-response curves of ANG II and ANG III to the right with similar dissociation constants (-log KI of 6.6 +/- 0.7 and 6.6 +/- 0.1 mol/kg, respectively) and no change in the maxima. PD123177 affected neither maximum MAP nor ED50 values for ANG II or ANG III. Our results show that losartan but not PD123177 is a competitive antagonist of the MAP effects of ANG II and ANG III.  相似文献   

12.
This study evaluated the contribution of angiotensin peptides acting at various receptor subtypes to the arterial pressure and heart rate of adult 9-wk-old male conscious salt-depleted spontaneously hypertensive rats (SHR). Plasma ANG II and ANG I in salt-depleted SHR were elevated sevenfold compared with peptide levels measured in sodium-replete SHR, whereas plasma ANG-(1-7) was twofold greater in salt-depleted SHR compared with salt-replete SHR. Losartan (32.5 micromol/kg), PD-123319 (0.12 micromol. kg(-1). min(-1)), [d-Ala(7)]ANG-(1-7) (10 and 100 pmol/min), and a polyclonal ANG II antibody (0.08 mg/min) were infused intravenously alone or in combination. Combined blockade of AT(2) and AT((1-7)) receptors significantly increased the blood pressure of losartan-treated SHR (+15 +/- 1 mmHg; P < 0.01); this change did not differ from the blood pressure elevation produced by the sole blockade of AT((1-7)) receptors (15 +/- 4 mmHg). On the other hand, sole blockade of AT(2) receptors in losartan-treated SHR increased mean arterial pressure by 8 +/- 1 mmHg (P < 0.05 vs. 5% dextrose in water as vehicle), and this increase was less than the pressor response produced by blockade of AT((1-7)) receptors alone or combined blockade of AT((1-7)) and AT(2) receptors. The ANG II antibody increased blood pressure to the greatest extent in salt-depleted SHR pretreated with only losartan (+11 +/- 2 mmHg) and to the least extent in salt-depleted SHR previously treated with the combination of losartan, PD-123319, and [d-Ala(7)]ANG-(1-7) (+7 +/- 1 mmHg; P < 0.01). Losartan significantly increased heart rate, whereas other combinations of receptor antagonists or the ANG II antibody did not alter heart rate. Our results demonstrate that ANG II and ANG-(1-7) act through non-AT(1) receptors to oppose the vasoconstrictor actions of ANG II in salt-depleted SHR. Combined blockade of AT(2) and AT((1-7)) receptors and ANG II neutralization by the ANG II antibody reversed as much as 67% of the blood pressure-lowering effect of losartan.  相似文献   

13.
We determined the cardiovascular and neurohormonal responses to intracerebroventricular injection of leptin in conscious rabbits. Intracerebroventricular injection of leptin elicited dose-related increases in mean arterial pressure and renal sympathetic nerve activity while producing no consistent, significant increases in heart rate. Peak values of mean arterial pressure and renal sympathetic nerve activity induced by intracerebroventricular injection of 50 microgram of leptin (+17.3 +/- 1.2 mmHg and +47.9 +/- 12.0%) were obtained at 10 and 20 min after injection, respectively. Plasma catecholamine concentrations significantly increased at 60 min after intracerebroventricular injection of leptin (control vs. 60 min; epinephrine: 33 +/- 12 vs. 97 +/- 27 pg/ml, P < 0.05; norepinephrine: 298 +/- 39 vs. 503 +/- 86 pg/ml, P < 0.05). Intracerebroventricular injection of leptin also caused significant increases in plasma vasopressin and glucose levels. However, pretreatment with intravenous injection of pentolinium (5 mg/kg), a ganglion blocking agent, abolished these cardiovascular and neurohormonal responses. On the other hand, intravenous injection of the same dose of leptin (50 microgram) as used in the intracerebroventricular experiment failed to cause any cardiovascular and renal sympathetic nerve responses. These results suggest that intracerebroventricular leptin acts in the central nervous system and activates sympathoadrenal outflow, resulting in increases in arterial pressure and plasma glucose levels in conscious rabbits.  相似文献   

14.
Experiments were performed to determine if glucocorticoids potentiate central hypertensive actions of ANG II. Male Sprague-Dawley rats were treated for 3 days to 3 wk with corticosterone (Cort). Experiments were performed in conscious rats that had previously been instrumented with arterial and venous catheters and an intracerebroventricular guide cannula in a lateral ventricle. Baseline arterial pressure (AP) was greater in Cort-treated rats than in control rats (119 +/- 2 vs. 107 +/- 1 mmHg, P < 0.01). Microinjection of ANG II intracerebroventricularly produced a significantly larger increase in AP in Cort-treated rats than in control rats. For example, at 30 ng ANG II, AP increased by 23 +/- 1 and 16 +/- 2 mmHg in Cort-treated and control rats, respectively (P < 0.01). Microinjection of an angiotensin type 1 receptor antagonist significantly decreased AP (-6 +/- 2 mmHg) and heart rate (-26 +/- 7 beats/min) in Cort-treated but not control rats. Increases in AP produced by intravenous administration of ANG II were not different between control and Cort-treated rats. Intravenous injections of ANG II antagonist had no significant effects on mean AP or heart rate in control or Cort-treated rats. Therefore, a sustained increase in plasma Cort augments the central pressor effects of ANG II without altering the pressor response to peripheral administration of the hormone.  相似文献   

15.
Hood SG  Watson AM  May CN 《Peptides》2005,26(7):1248-1256
Urotensin II (UII) is a highly conserved peptide that has potent cardiovascular actions following central and systemic administration. To determine whether the cardiovascular actions of UII are mediated via beta-adrenoceptors, we examined the effect of intravenous (IV) propranolol on the responses to intracerebroventricular (ICV) and IV administration of UII in conscious sheep. Sheep were surgically instrumented with ICV guide tubes and flow probes or cardiac sympathetic nerve recording electrodes. ICV UII (0.2 nmol/kg over 1 h) caused prolonged increases in heart rate (HR; 33 +/- 11 beats/min; P < 0.01), dF/dt (581 +/- 83 L/min/s; P < 0.001) and cardiac output (2.3 +/- 0.4 L/min; P < 0.001), accompanied by increases in coronary (19.8 +/- 5.4 mL/min; P < 0.01), mesenteric (211 +/- 50 mL/min; P < 0.05) and iliac (162 +/- 31 mL/min; P < 0.001) blood flows and plasma glucose (7.0 +/- 2.6 mmol/L; P < 0.05). Propranolol (30 mg bolus followed by 0.5 mg/kg/h IV) prevented the cardiac responses to ICV UII and inhibited the mesenteric vasodilatation. At 2 h after ICV UII, when HR and mean arterial pressure (MAP) were increased, cardiac sympathetic nerve activity (CSNA) was unchanged and the relation between CSNA and diastolic pressure was shifted to the right (P < 0.05). The hyperglycemia following ICV UII was abolished by ganglion blockade but not propranolol. IV UII (20 nmol/kg) caused a transient increase in HR and fall in stroke volume; these effects were not blocked by propranolol. These results demonstrate that the cardiac actions of central UII depend on beta-adrenoreceptor stimulation, secondary to increased CSNA and epinephrine release, whereas the cardiac actions of systemic UII are not mediated by beta-adrenoreceptors and probably depend on a direct action of UII on the heart.  相似文献   

16.
In this study the hypothesis was tested that chronic infusion of ANG II attenuates acute volume expansion (VE)-induced inhibition of renal sympathetic nerve activity (SNA). Rats received intravenous infusion of either vehicle or ANG II (12 ng. kg(-1). min(-1)) for 7 days. ANG II-infused animals displayed an increased contribution of SNA to the maintenance of mean arterial pressure (MAP) as indicated by ganglionic blockade, which produced a significantly (P < 0.01) greater decrease in MAP (75 +/- 3 mmHg) than was observed in vehicle-infused (47 +/- 8 mmHg) controls. Rats were then anesthetized, and changes in MAP, mean right atrial pressure (MRAP), heart rate (HR), and renal SNA were recorded in response to right atrial infusion of isotonic saline (20% estimated blood volume in 5 min). Baseline MAP, HR, and hematocrit were not different between groups. Likewise, MAP was unchanged by acute VE in vehicle-infused animals, whereas VE induced a significant bradycardia (P < 0.05) and increase in MRAP (P < 0.05). MAP, MRAP, and HR responses to VE were not statistically different between animals infused with vehicle vs. ANG II. In contrast, VE significantly (P < 0.001) reduced renal SNA by 33.5 +/- 8% in vehicle-infused animals but was without effect on renal SNA in those infused chronically with ANG II. Acutely administered losartan (3 mg/kg iv) restored VE-induced inhibition of renal SNA (P < 0.001) in rats chronically infused with ANG II. In contrast, this treatment had no effect in the vehicle-infused group. Therefore, it appears that chronic infusion of ANG II can attenuate VE-induced renal sympathoinhibition through a mechanism requiring AT(1) receptor activation. The attenuated sympathoinhibitory response to VE in ANG II-infused animals remained after arterial barodenervation and systemic vasopressin V(1) receptor antagonism and appeared to depend on ANG II being chronically increased because ANG II given acutely had no effect on VE-induced renal sympathoinhibition.  相似文献   

17.
In Dahl salt-sensitive (S) rats, Na(+) entry into the cerebrospinal fluid (CSF) and sympathoexcitatory and pressor responses to CSF Na(+) are enhanced. Salt-inducible kinase 1 (SIK1) increases Na(+)/K(+)-ATPase activity in kidney cells. We tested the possible role of SIK1 in regulation of CSF [Na(+)] and responses to Na(+) in the brain. SIK1 protein and activity were lower in hypothalamic tissue of Dahl S (SS/Mcw) compared with salt-resistant SS.BN13 rats. Intracerebroventricular infusion of the protein kinase inhibitor staurosporine at 25 ng/day, to inhibit SIK1 further increased mean arterial pressure (MAP) and HR but did not affect the increase in CSF [Na(+)] or hypothalamic aldosterone in Dahl S on a high-salt diet. Intracerebroventricular infusion of Na(+)-rich artificial CSF caused significantly larger increases in renal sympathetic nerve activity, MAP, and HR in Dahl S vs. SS.BN13 or Wistar rats on a normal-salt diet. Intracerebroventricular injection of 5 ng staurosporine enhanced these responses, but the enhancement in Dahl S rats was only one-third that in SS.BN13 and Wistar rats. Staurosporine had no effect on MAP and HR responses to intracerebroventricular ANG II or carbachol, whereas the specific protein kinase C inhibitor GF109203X inhibited pressor responses to intracerebroventricular Na(+)-rich artificial CSF or ANG II. These results suggest that the SIK1-Na(+)/K(+)-ATPase network in neurons acts to attenuate sympathoexcitatory and pressor responses to increases in brain [Na(+)]. The lower hypothalamic SIK1 activity and smaller effect of staurosporine in Dahl S rats suggest that impaired activation of neuronal SIK1 by Na(+) may contribute to their enhanced central responses to sodium.  相似文献   

18.
The assumption that tachycardia during light to moderate exercise was predominantly controlled by withdrawal of cardiac parasympathetic nerve activity but not by augmentation of cardiac sympathetic nerve activity (CSNA) was challenged by measuring CSNA during treadmill exercise (speed, 10-60 m/min) for 1 min in five conscious cats. As soon as exercise started, CSNA and heart rate (HR) increased and mean arterial pressure (MAP) decreased; their time courses at the initial 12-s period of exercise were irrespective of the running speed. CSNA increased 168-297% at 7.1 +/- 0.4 s from the exercise onset, and MAP decreased 8-13 mmHg at 6.0 +/- 0.3 s, preceding the increase of 40-53 beats/min in HR at 10.5 +/- 0.4 s. CSNA remained elevated during the later period of exercise, whereas HR and MAP gradually increased until the end of exercise. After the cessation of exercise, CSNA returned quickly to the control, whereas HR was slowly restored. In conclusion, cardiac sympathetic outflow augments at the onset of and during dynamic exercise even though the exercise intensity is low to moderate, which may contribute to acceleration of cardiac pacemaker rhythm.  相似文献   

19.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

20.
In the present study in normotensive Wistar Kyoto rats (WKY), we investigated whether any angiotensin II (ANG II) increases in vascular cyclic GMP production were via stimulation of AT(2) receptors. Adult WKY were infused for 4h with ANG II (30 ng/kg per min, i.v.) or vehicle (0.9% NaCl, i.v.) after pretreatment with (1) vehicle, (2) losartan (100 mg/kg p.o.), (3) PD 123319 (30 mg/kg i.v.), (4) losartan+PD 123319, (5) icatibant (500 microg/kg i.v.), (6) L-NAME (1 mg/kg i.v.), (7) minoxidil (3 mg/kg i.v.). Mean arterial blood pressure (MAP) was continuously monitored, and plasma ANG II and aortic cyclic GMP were measured at the end of the study. ANG II infusion over 4h raised MAP by a mean of 13 mmHg. This effect was completely prevented by AT(1) receptor blockade. PD 123319 slightly attenuated the pressor effect induced by ANG II alone (123.4+/-0.8 versus 130.6+/-0.6) but did not alter MAP in rats treated simultaneously with ANG II + losartan (113+/-0.6 versus 114.3+/-0.8). Plasma levels of ANG II were increased 2.2-3.7-fold by ANG II infusion alone or ANG II in combination with the various drugs. The increase in plasma ANG II levels was most pronounced after ANG II+losartan treatment but absent in rats treated with losartan alone. Aortic cyclic GMP levels were not significantly changed by either treatment. Our results demonstrate that the AT(2) receptor did not contribute to the cyclic GMP production in the vascular wall of normotensive WKY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号