首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Previous studies in healthy humans have established that the (approximately 850 ml) volume enclosed by the pericardial sac is nearly constant over the cardiac cycle, exhibiting a transient approximately 5% decrease (approximately 40 ml) from end diastole to end systole. This volume decrease manifests as a "crescent" at the ventricular free wall level when short-axis MRI images of the epicardial surface acquired at end systole and end diastole are superimposed. On the basis of the (near) constant-volume property of the four-chambered heart, the volume decrease ("crescent effect") must be restored during subsequent early diastolic filling via the left atrial conduit volume. Therefore, volume conservation-based modeling predicts that pulmonary venous (PV) Doppler D-wave volume must be causally related to the radial displacement of the epicardium (Delta) (i.e., magnitude of "crescent effect" in the radial direction). We measured Delta from M-mode echocardiographic images and measured D-wave velocity-time integral (VTI) from Doppler PV flow of the right superior PV in 11 subjects with catheterization-determined normal physiology. In accordance with model prediction, high correlation was observed between Delta and D-wave VTI (r=0.86) and early D-wave VTI measured to peak D-wave velocity (r=0.84). Furthermore, selected subjects with various pathological conditions had values of Delta that differed significantly. These observations demonstrate the volume conservation-based causal relationship between radial pericardial displacement of the left ventricle and the PV D-wave-generated filling volume in healthy subjects as well as the potential role of the M-mode echo-derived radial epicardial displacement index Delta as a regional (radial) parameter of diastolic function.  相似文献   

2.
The constant-volume hypothesis regarding the four-chambered heart states that total pericardial volume remains invariant throughout the cardiac cycle. Previous canine studies have indicated that the pericardial volume remains constant within 5%; however, this hypothesis has not been validated in humans using state-of-the-art technology. The constant-volume hypothesis has several predictable functional consequences, including a relationship between atrial ejection fraction and chamber equilibrium volumes. Using cardiac magnetic resonance (MR) imaging (MRI), we measured the extent to which the constant-volume attribute of the heart is valid, and we tested the accuracy of the predicted relationship between atrial ejection fraction and chamber equilibrium volumes. Eleven normal volunteers and one volunteer with congenital absence of the pericardium were imaged using a 1.5-T MR scanner. A short-axis cine-loop stack covering the entire heart was acquired. The cardiac cycle was divided into 20 intervals. For each slice and interval, pericardial volumes were measured. The slices were stacked and summed, and total pericardial volume as a function of time was determined for each subject. In the normal subjects, chamber volumes at ventricular end diastole, end systole, and diastasis were measured. Pericardial volume remained invariant within 5 +/- 1% in normal subjects; maximum variation occurred near end systole. In the subject with congenital absence of the pericardium, total heart volume, defined by the epicardial surface, varied by 12%. The predictions of the relationship between atrial ejection fraction and chamber equilibrium volumes were well fit by MRI data. In normal subjects, the four-chambered heart is a constant-volume pump within 5 +/- 1%, and constant-volume-based modeling accurately predicts previously unreported physiological relationships.  相似文献   

3.
A computational model that accounts for blood-tissue interaction under physiological flow conditions was developed and applied to a thin-walled model of the left heart. This model consisted of the left ventricle, left atrium, and pulmonary vein flow. The input functions for the model included the pulmonary vein driving pressure and time-dependent relationship for changes in chamber tissue properties during the simulation. The Immersed Boundary Method was used for the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology, and the fluid mass and momentum conservation equations were solved using Patankar's Semi-Implicit Method for Pressure Linked Equations (SIMPLE). This model was used to examine the flow fields in the left heart under abnormal diastolic conditions of delayed ventricular relaxation, delayed ventricular relaxation with increased ventricular stiffness, and delayed ventricular relaxation with an increased atrial contraction. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions, and to the results from simulations of normal diastolic function in this model [1]. Cases involving impairment of diastolic function were modeled with changes to the input functions for fiber relaxation/contraction of the chambers. The three cases of diastolic dysfunction investigated agreed with the changes in diastolic flow fields seen clinically. The effect of delayed relaxation was to decrease the early filling magnitude, and this decrease was larger when the stiffness of the ventricle was increased. Also, increasing the contraction of the atrium during atrial systole resulted in a higher late filling velocity and atrial pressure. The results show that dysfunction can be modeled by changing the relationships for fiber resting-length and/or stiffness. This provides confidence in future modeling of disease, especially changes to chamber properties to examine the effect of local dysfunction on global flow fields.  相似文献   

4.
Accurately estimating left atrial (LA) volume with Doppler echocardiography remains challenging. Using angiography for validation, Marino et al. (Marino P, Prioli AM, Destro G, LoSchiavo I, Golia G, and Zardini P. Am Heart J 127: 886-898, 1994) determined LA volume throughout the cardiac cycle by integrating the velocity-time integrals of Doppler transmitral and pulmonary venous flow, assuming constant mitral valve and pulmonary vein areas. However, this LA volume determination method has never been compared with three-dimensional LA volume data from cardiac MRI, the gold standard for cardiac chamber volume measurement. Previously, we determined that the effective mitral valve area is not constant but varies as a function of time. Therefore, we sought to determine whether the effective pulmonary vein area (EPVA) might be time varying as well and also assessed Marino's method for estimating LA volume. We imaged 10 normal subjects using cardiac MRI and concomitant transthoracic Doppler echocardiography. LA and left ventricular (LV) volumes were measured by MRI, transmitral and pulmonary vein flows were measured by Doppler echocardiography, and time dependence was synchronized via the electrocardiogram. LA volume, estimated using Marino's method, was compared with the MRI measurements. Differences were observed, and the discrepancy between the echocardiographic and MRI methods was used to predict EPVA as a function of time. EPVA was also directly measured from short-axis MRI images and was found to be time varying in concordance with predicted values. We conclude that because EPVA and LA volume time dependence are in phase, LA filling in systole and LV filling in diastole are both facilitated. Application to subjects in select pathophysiological states is in progress.  相似文献   

5.
Isolated hearts of the majority of rats receiving 20 mg/kg adriamycin for 10 weeks exhibited normal pump function. Left ventricular diastolic stiffness of these hearts was approximately 1.5 times higher, as compared to control hearts, with the filling pressure in the range of 5 to 20 cm H2O and diastolic pause 23% longer due to bradycardia. Pacing-induced increase in the heart rate up to the control level resulted in further increase in left ventricular diastolic stiffness due to the rise in myocardial stiffness, associated with a fall in cardiac output by 36%. The heart and right atrial compliance determined in separate experiments did not differ significantly from the control. The results suggest that increased left ventricular diastolic stiffness of adriamycin-treated rats seems to be rather due to energy-dependent disturbance in myofibril relaxation than to usually arising myocardial fibrosis.  相似文献   

6.
Aided by advancements in computer speed and modeling techniques, computational modeling of cardiac function has continued to develop over the past twenty years. The goal of the current study was to develop a computational model that provides blood-tissue interaction under physiologic flow conditions, and apply it to a thin-walled model of the left heart. To accomplish this goal, the Immersed Boundary Method was used to study the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology. The fluid mass and momentum conservation equations were solved using Patankar's Semi-Implicit Method for Pressure Linked Equations (SIMPLE). A left heart model was developed to examine diastolic function, and consisted of the left ventricle, left atrium, and pulmonary flow. The input functions for the model included the pulmonary driving pressure and time-dependent relationship for changes in chamber tissue properties during the simulation. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions for validation. The inflow velocities through the mitral valve corresponded with clinical values (E-wave = 74.4 cm/s, A-wave = 43 cm/s, and E/A = 1.73). The pressure traces for the atrium and ventricle, and the appearance of the ventricular flow fields throughout filling, agreed with those observed in the heart. In addition, the atrial flow fields could be observed in this model and showed the conduit and pump functions that current theory suggests. The ability to examine atrial function in the present model is something not described previously in computational simulations of cardiac function.  相似文献   

7.
Most noninvasive measures of diastolic function are made during left ventricular (LV) filling and are therefore subject to "pseudonormalization," because variation in left atrial (LA) pressure may confound the estimation of relaxation rate. Counterclockwise twist of the LV develops during ejection, but untwisting occurs rapidly during isovolumic relaxation, before mitral opening. We hypothesized that the rate of untwisting might reflect the process of relaxation independent of LA pressure. Recoil rate (RR), the velocity of LV untwisting, was measured by tagged magnetic resonance imaging and regressed against the relaxation time constant (tau), recorded by catheterization, in 10 dogs at baseline and after dobutamine, saline, esmolol, and methoxamine treatment. RR correlated closely (average r = -0.86) with tau and was unaffected by elevated LA pressure. Multiple regression showed that tau, but not LA or aortic pressure, was an independent predictor of RR (P < 0.0001, P = 0.99, and P = 0.18, respectively). The rate of recoil of torsion, determined wholly noninvasively, provides an isovolumic phase, preload-independent assessment of LV relaxation. Use of this novel parameter should allow the detailed study of diastolic function in states known to affect filling rates, such as aging, hypertension, and congestive heart failure.  相似文献   

8.

Background

Left ventricular diastolic function is impaired during pregnancy. However, changes in left atrial (LA) function remain unclear. We aimed to evaluate changes in LA function during pregnancy using two-dimensional speckle tracking echocardiography (2DSTE).

Methods and Results

50 pregnant and 50 healthy nulliparous (control group) women were enrolled in this study. All pregnant women were followed up postpartum in sixth-month. The LA maximum volume, LA minimal volume and LA preatrial contraction volume were obtained using biplane modified Simpson’s method. LA filling volume, LA expansion index, LA ejection fraction, passive volume, passive emptying index, active volume, and active emptying index were calculated. LA longitudinal systolic strain (SS), systolic strain rate (s-SR), early diastolic strain rate (e-SR), and late diastolic strain rate (a-SR) were obtained by 2DSTE. Compared to the control group, the reservoir function was increased in pregnant patients (P<0.05); conduit function was decreased in pregnant patients (P<0.05); booster pump function was increased in pregnant patients (P<0.05). There was no statistically significant difference between the control group and postpartum group.

Conclusions

LA reservoir and booster pump function were increased, while conduit function was decreased during pregnancy using 2DSTE. The changes were reversible. 2DSTE can easily assess LA function during pregnancy with good repeatability.  相似文献   

9.
PurposeTo assess the impact of left ventricular (LV) diastolic dysfunction on left atrial (LA) phasic volume and function using dual-source CT (DSCT) and to find a viable alternative prognostic parameter of CT for LV diastolic dysfunction through quantitative evaluation of LA phasic volume and function in patients with LV diastolic dysfunction.ResultsLA ejection fraction (LAEF), LA contraction, reservoir, and conduit function in patients in impaired relaxation group were not different from those in the normal group, but they were lower in patients in the pseudonormal and restrictive LV diastolic dysfunction groups (P < 0.05). For LA conduit function, there were no significant differences between the patients in the pseudonormal group and restrictive filling group (P = 0.195). There was a strong correlation between the indexed maximal left atrial volume (LAVmax, r = 0.85, P < 0.001), minimal left atrial volume (LAVmin, r = 0.91, P < 0.001), left atrial volume at the onset of P wave (LAVp, r = 0.84, P < 0.001), and different stages of LV diastolic function. The LAVi increased as the severity of LV diastolic dysfunction increased.ConclusionsLA remodeling takes place in patients with LV diastolic dysfunction. At the same time, LA phasic volume and function parameters evaluated by DSCT indicated the severity of the LV diastolic dysfunction. Quantitative analysis of LA phasic volume and function parameters using DSCT could be a viable alternative prognostic parameter of LV diastolic function.  相似文献   

10.
目的超声心动图检测左心室舒张功能与冠状动脉造影对照分析,探讨超声诊断的临床意义。方法85例临床疑诊冠心病超声检查左心室二尖瓣口舒张早、晚期血流充盈速度E、A两峰峰值,计算E/A比值,其结果分为舒张功能正常和降低两组。全部病人均与冠状动脉造影结果对照分析。结果超声检测左心室舒张功能与冠脉造影均正常24例,均异常53例,共77例,符合率90.59%,不符合8例,占9.41%;本文依据冠脉造影提出超声检测左心室舒张功能正常值;并发现冠心病早期舒张功能降低,且随年龄与病程长短不同。结论超声检测左心室舒张功能的改变与冠脉造影符合率高,舒张功能于冠心病早期可降低,随病程长短不同,为临床对冠心病诊治和预防提供有价值的信息。  相似文献   

11.
目的:研究超声心动图对左室舒张性心力衰竭(LVDHF)患者左心形态及舒张功能的评估价值。方法:选择2014年3月至2016年3月我院收治的LVDHF患者78例记为观察组,另选择同期健康志愿者80例记为对照组,两组受试者均进行血压、心率检查,并利用超声心动图技术检测两组受试者的心脏相关指标。结果:观察组的舒张压(DBP)、收缩压(SBP)、心率(HR)、左房内径(LAD)、室间隔厚度(IVST)、左室后壁厚度(LVPWT)、综合指标(E/Ea)及反向血流速度(Ar)水平均明显高于对照组,而早、晚期的运动速度比(Ea/Aa)、血流传播速度(Vp)及峰速比(S/D)水平明显低于对照组,差异均有统计学意义(P0.05)。结论:超声心动图能准确地反应LVDHF患者的左心形态以及舒张功能,可在临床进行推广。  相似文献   

12.
Changes in diastolic indexes during normal aging, including reduced early filling velocity (E), lengthened E deceleration time (DT), augmented late filling (A), and prolonged isovolumic relaxation time (IVRT), have been attributed to slower left ventricular (LV) pressure (LVP) decay. Indeed, this constellation of findings is often referred to as the "abnormal relaxation" pattern. However, LV filling is determined by the atrioventricular pressure gradient, which depends on both LVP decline and left atrial (LA) pressure (LAP). To assess the relative influence of LVP decline and LAP, we studied 122 normal subjects aged 21-92 yr by Doppler echocardiography and MRI. LVP decline was assessed by color M-mode (V(p)) and the LV untwisting rate. Early diastolic LAP was evaluated using pulmonary vein flow systolic fraction, pulmonary vein flow diastolic DT, color M-mode (E/V(p)), and tissue Doppler (E/E(m)). Linear regression showed the expected reduction of E, increase in A, and prolongation of IVRT and DT with advancing age. There was no relation of age to parameters reflecting the rate of LVP decline. However, older age was associated with reduced E/V(p) (P = 0.008) and increased pulmonary vein systolic fraction (P < 0.001), pulmonary vein DT (P = 0.0026), and E/E(m) (P < 0.0001), all suggesting reduced early LAP. Therefore, reduced early filling in older adults may be more closely related to a reduced early diastolic LAP than to slower LVP decline. This effect also explains the prolonged IVRT. We postulate that changes in LA active or passive properties may contribute to development of the abnormal relaxation pattern during the aging process.  相似文献   

13.
Gordon R. Cumming  W. Carr 《CMAJ》1966,95(10):527-531
Propranolol (P) .13 mg./kg. was given to seven patients with mitral valve obstruction the changes in resting and exercise hemodynamics were followed by means of combined right and left heart catheterization. Changes were variable. At rest there was a decrease in heart rate of 10 beats/min. with no consistent change in stroke volume, cardiac output, left ventricular systolic (LVS) or left atrial (LA) pressure after P. Mean left ventricular end-diastolic (LVED) pressure was increased 3 mm., mean pulmonary artery (PA) pressure was increased 4 mm., and mean mitral valve gradient was reduced 3 mm. Hg by P. During exercise, mean LVS pressure was decreased 31 mm., mean LVED pressure increased 3 mm., mean LA pressure decreased 3 mm., and mean mitral valve gradient was reduced 5 mm. Hg after P. Mean exercise PA pressure was unchanged, cardiac output was reduced 0.9 1./min., and mean heart rate was reduced 37 beats/min., while stroke volume increased 3 ml./beat after P. Exercise pulmonary vascular resistance was increased from 6.1 to 8.2 units by P. Despite a slower heart rate, the diastolic filling period was not increased. P has no place in the treatment of the majority of patients with mitral stenosis because it further reduces cardiac performance below normal.  相似文献   

14.
The curvilinearity of the atrial pressure-volume curve implies that atrial compliance decreases progressively with increasing left atrial (LA) pressure (LAP). We predicted that reduced LA compliance leads to more rapid deceleration of systolic pulmonary venous (PV) flow. With this rationale, we investigated whether the deceleration time (t dec) of PV systolic flow velocity reflects mean LAP. In eight patients during coronary surgery, before extracorporeal circulation, PV flow by ultrasonic transit time and invasive LAP were recorded during stepwise volume loading. The t dec was calculated using two methods: by drawing a tangent through peak deceleration and by drawing a line from peak systolic flow through the nadir between the systolic and early diastolic flow waves. LA compliance was calculated as the systolic PV flow integral divided by LAP increment. Volume loading increased mean LAP from 11 +/- 3 to 20 +/- 5 mmHg (P < 0.001) (n = 40), reduced LA compliance from 1.16 +/- 0.42 to 0.72 +/- 0.40 ml/mmHg (P < 0.004) (n = 40), and reduced t dec from 320 +/- 50 to 170 +/- 40 ms (P < 0.0005) (n = 40). Mean LAP correlated well with t dec (r = 0.84, P < 0.0005) (n = 40) and LA compliance (r = 0.79, P < 0.0005) (n = 40). Elevated LAP caused a decrease in LA compliance and therefore more rapid deceleration of systolic PV flow. The t dec has potential to become a semiquantitative marker of LAP and an index of LA passive elastic properties.  相似文献   

15.

Background

Radiofrequency catheter ablation of atrial fibrillation (AF) has been proved to be effective and to prevent progressive left atrial (LA) remodeling. Cryoballoon catheter ablation (CCA), using a different energy source, was developed to simplify the ablation procedure. Our hypothesis was that successful CCA can also prevent progressive LA remodeling.

Methods

36 patients selected for their first CCA because of nonvalvular paroxysmal AF had echocardiography before and 3, 6 and 12 months after CCA. LA diameters, volumes (LAV) and LA volume index (LAVI) were evaluated. LA function was assessed by: early diastolic velocities of the mitral annulus (Aasept, Aalat), LA filling fraction (LAFF), LA emptying fraction (LAEF) and the systolic fraction of pulmonary venous flow (PVSF). Detailed left ventricular diastolic function assessment was also performed.

Results

Excluding recurrences in the first 3-month blanking period, the clinical success rate was 64%. During one-year of follow-up, recurrent atrial arrhythmia was found in 21 patients (58%). In the recurrent group at 12 months after ablation, minimal LAV (38 ± 19 to 44 ± 20 ml; p < 0.05), maximal LAV (73 ± 23 to 81 ± 24 ml; p < 0.05), LAVI (35 ± 10 to 39 ± 11 ml/m2; p = 0.01) and the maximal LA longitudinal diameter (55 ± 5 to 59 ± 6 mm; p < 0.01) had all increased. PVSF (58 ± 9 to 50 ± 10%; p = 0.01) and LAFF (36 ± 7 to 33 ± 8%; p = 0.03) had decreased. In contrast, after successful cryoballoon ablation LA size had not increased and LA function had not declined. In the recurrent group LAEF was significantly lower at baseline and at follow-up visits.

Conclusions

In patients whose paroxysmal atrial fibrillation recurred within one year after cryoballoon catheter ablation left atrial size had increased and left atrial function had declined. In contrast, successful cryoballoon catheter ablation prevented progressive left atrial remodeling.  相似文献   

16.

Background

Left atrial (LA) function plays an important role in the maintenance of cardiac output, however, in patients with constrictive pericarditis (CP), whether pericardial restriction and adhesion can lead to LA dysfunction, and the characteristics of LA function remain unclear. The aim of the study is to compare the left atrial (LA) function of patients with CP to that of healthy study participants using speckle tracking echocardiography (STE) and conventional echocardiography.

Methods and Results

Thirty patients with CP and 30 healthy volunteers (controls) were enrolled in the study. The underlying cause of CP was viral pericarditis in 24 (80%) patients and unknown in 6 (20%) patients. The LA maximum volume (Vmax), LA minimal volume (Vmin), and LA volume before atrial contraction (Vpre-a) were measured using biplane modified Simpson’s method. The LA expansion index (LA reservoir function) was determined as follows: ([LAVmax - LAVmin]/LAVmin) ×100. The passive emptying index (LA conduit function) was calculated as follows: ([LAVmax - LAVpre-a]/LAVmax) ×100, and the active emptying index (booster pump function) was calculated as follows: ([LAVpre-a - LAVmin]/LAVpre-a) ×100. All the patients underwent two-dimensional STE. The LA global systolic strain (S), systolic strain rate (SrS), early diastolic strain rate (SrE) and late diastolic strain rate (SrA) were measured. The LA expansion index, passive emptying index, the active emptying index and the LA global S, SrS, SrE, SrA were found to be significantly lower in patients with CP than in the control participants (P <0.001). LA function was correlated with the early diastolic velocity of the lateral mitral annulus (P <0.05).

Conclusions

Although left ventricular systolic function was preserved in patients with CP, the LA reservoir, conduit, and booster functions were impaired. Pericardial restriction and impairment of the LA myocardium may play an important role in the reduction of LA function in patients with CP.  相似文献   

17.
Summary The pressure difference between the cardinal sinus and the pericardium, and the transmural ventricular diastolic pressure at rest and during swimming in the leopard shark, Triakis semifasciata, was measured to characterize the mechanism of cardiac filling in chronically-instrumented fish and to evaluate cardiac responses to swimming. Echo-Doppler and radiographic imaging were also used to fully describe the cardiac cycle. Swimming induces an increase in preload as manifested by a large increment of cardinal sinus pressure (0.26/0.20 [systolic/diastolic] to 0.49/0.32 kPa) which always exceeds pericardial pressure. Increases in both mean ventricular diastolic transmural pressure (0.30–0.77 kPa) and cardinal sinus pressure during swimming suggest increased cardiac filling by vis a tergo as the mechanism for augmenting cardiac output. In contrast to mammals, the fluid-filled pericardial space of elasmobranchs is considerably larger and the pericardium itself does not move in concert with the heart throughout the cardiac cycle. Also, modest increases in heart rate drastically curtail the duration of diastole, which becomes much less than that of systole, a phenomenon not found in mammals. In the absence of tachycardia (<40 bpm), ventricular filling is characterized by a period of early rapid filling, and a late period of filling owing to atrial systole, separated by a period of diastasis. Ventricular filling in elasmobranchs is thus biphasic and is not solely dependent on atrial systole. Atrial diastole is characterized by three filling periods associated with atrial relaxation, ventricular ejection, and sinus venosus contraction. The estimated ventricular ejection fraction of Triakis (80%) exceeds that of the mammalian left ventricle.  相似文献   

18.
OBJECTIVES: To investigate possible cardiac morphofunctional alterations observed in 26 Turner's syndrome (TS) patients on prolonged high-dose growth hormone (GH) therapy. STUDY DESIGN: We examined 26 TS subjects treated with rhGH (1 U/kg/week) for a mean period of 4.9 years (range 1-7.8) and 37 age-, weight- and height-matched healthy girls. Left ventricular volume, mass, systolic function, cardiac index, systemic vascular resistance and diastolic function were evaluated by two-dimensional and Doppler echocardiography. RESULTS: Heart rate and systolic blood pressure (BP) were higher in TS patients than in controls, while diastolic BP was lower. Left ventricular volumes, ejection fraction, mass index, M/V ratio and cardiac index did not differ significantly; systemic vascular resistance was slightly decreased. Left ventricular fractional shortening and mean velocity of circumferential shortening were slightly increased while end-systolic meridional stress was decreased in TS. Contractile state was normal in TS. Diastolic function assessment showed a shortening of isovolumetric relaxation and diastolic filling times with an increased atrial contribution and a normal pulmonary venous flow. CONCLUSION: Cardiac morphology in TS patients on GH therapy is similar to controls. The observed changes in left ventricular systolic and diastolic function should be interpreted as an adaptation to the higher heart rate and reduced peripheral vascular resistance induced by GH therapy.  相似文献   

19.
Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 ± 7.7 beats/min) to hibernating states (17.8 ± 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 ± 2.8%) as compared to the active state (40.8 ± 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 ± 2.8% as compared to 20.7 ± 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.  相似文献   

20.
We studied the acute effect of high-intensity interval exercise on biventricular function using cardiac magnetic resonance imaging in nine patients [age: 49 ± 16 yr; left ventricular (LV) ejection fraction (EF): 35.8 ± 7.2%] with nonischemic mild heart failure (HF). We hypothesized that a significant impairment in the immediate postexercise end-systolic volume (ESV) and end-diastolic volume (EDV) would contribute to a reduction in EF. We found that immediately following acute high-intensity interval exercise, LV ESV decreased by 6% and LV systolic annular velocity increased by 21% (both P < 0.05). Thirty minutes following exercise (+30 min), there was an absolute increase in LV EF of 2.4% (P < 0.05). Measures of preload, left atrial volume and LV EDV, were reduced immediately following exercise. Similar responses were observed for right ventricular volumes. Early filling velocity, filling rate, and diastolic annular velocity remained unchanged, while LV untwisting rate increased 24% immediately following exercise (P < 0.05) and remained 18% above baseline at +30 min (P < 0.05). The major novel findings of this investigation are 1) that acute high-intensity interval exercise decreases the immediate postexercise LV ESV and increases LV EF at +30 min in patients with mild HF, and this is associated with a reduction in LV afterload and maintenance of contractility, and 2) that despite a reduction in left atrial volume and LV EDV immediately postexercise, diastolic function is preserved and may be modulated by enhanced LV peak untwisting rate. Acute high-intensity interval exercise does not impair postexercise biventricular function in patients with nonischemic mild HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号