首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently demonstrated that regulation of Cdc25A protein abundance during S phase and in response to DNA damage is mediated by SCFβTrCP activity. Based on sequence homology of known βTrCP substrates, we found that Cdc25A contains a conserved motif (DSG), phosphorylation of which is required for interaction with βTrCP1. Here, we show that phosphorylation at Ser 82 within the DSG motif anchors Cdc25A to βTrCP and that Chk1-dependent phosphorylation at Ser 76 affects this interaction as well as βTrCP-dependent degradation. We propose that a hierarchical order of phosphorylation events commits Cdc25A to βTrCP-dependent degradation. According to our model, phosphorylation at Ser 76 is a “priming” step required for Ser 82 phosphorylation, which in turn allows recruitment of Cdc25A by βTrCP and subsequent βTrCP-dependent degradation.  相似文献   

2.
Cdc25A phosphatase, which is essential in cell cycle progression, is degraded by the proteasome throughout interphase and in response to genotoxic stress. Phosphorylation of Cdc25A on Ser82 in the DSG motif is important in the recognition by β-TrCP, resulting in targeting of Cdc25A for ubiquitination. Chk1 is known to phosphorylate Cdc25A on Ser76, and NEK11 or CK1α relays phosphorylation of Cdc25A to Ser82 in a hierarchical manner. In this study, we found that CK1ε has unique enzymatic activity on the serine residue in the DSG motif using a β-catenin N-terminal region as a substrate. We then examined whether CK1ε has activity on the DSG motif of Cdc25A. We found CK1ε directly phosphorylated Ser82 without any prior phosphorylation of Cdc25A, and depletion of CK1ε stabilized the cellular Cdc25A in 293 cells. Moreover, we found that CK1ε also has activity as a relaying kinase like NEK11 or CK1α when the cell is exposed to DNA damage. Taken together, our results indicate that CK1ε regulates the cellular levels of Cdc25A in parallel with Chk1-dependent Cdc25A degradation, contributing to the precise control of cell division.  相似文献   

3.
Viral protein U (Vpu) of HIV-1 has two known functions in replication of the virus: degradation of its cellular receptor CD4 and enhancement of viral particle release. Vpu binds CD4 and simultaneously recruits the betaTrCP subunit of the SCF(betaTrCP) ubiquitin ligase complex through its constitutively phosphorylated DS52GXXS56 motif. In this process, Vpu was found to escape degradation, while inhibiting the degradation of betaTrCP natural targets such as beta-catenin and IkappaBalpha. We further addressed this Vpu inhibitory function with respect to the degradation of Emi1 and Cdc25A, two betaTrCP substrates involved in cell-cycle progression. In the course of these experiments, we underscored the importance of a novel phosphorylation site in Vpu. We show that, especially in cells arrested in early mitosis, Vpu undergoes phosphorylation of the serine 61 residue, which lies adjacent to the betaTrCP-binding motif. This phosphorylation event triggers Vpu degradation by a betaTrCP-independent process. Mutation of Vpu S61 in the HIV-1 provirus extends the half-life of the protein and significantly increases the release of HIV-1 particles from HeLa cells. However, the S61 determinant of regulated Vpu turnover is highly conserved within HIV-1 isolates. Altogether, our results highlight a mechanism where differential phosphorylation of Vpu determines its fate as an adaptor or as a substrate of distinct ubiquitin ligases. Conservation of the Vpu degradation determinant, despite its negative effect on virion release, argues for a role in overall HIV-1 fitness.  相似文献   

4.

Background

Failure to regulate the levels of Cdc25A phosphatase during the cell cycle or during a checkpoint response causes bypass of DNA damage and replication checkpoints resulting in genomic instability and cancer. During G1 and S and in cellular response to DNA damage, Cdc25A is targeted for degradation through the Skp1-cullin-β-TrCP (SCFβ-TrCP) complex. This complex binds to the Cdc25A DSG motif which contains serine residues at positions 82 and 88. Phosphorylation of one or both residues is necessary for the binding and degradation to occur.

Results

We now show that mutation of serine 88 to phenylalanine, which is a cancer-predisposing polymorphic variant in humans, leads to early embryonic lethality in mice. The mutant protein retains its phosphatase activity both in vitro and in cultured cells. It fails to interact with the apoptosis signal-regulating kinase 1 (ASK1), however, and therefore does not suppress ASK1-mediated apoptosis.

Conclusions

These data suggest that the DSG motif, in addition to its function in Cdc25A-mediated degradation, plays a role in cell survival during early embyogenesis through suppression of ASK1-mediated apoptosis.
  相似文献   

5.
Ubiquitin-dependent degradation of Cdc25A is a major mechanism for damage-induced S-phase checkpoint. Two ubiquitin ligases, the Skp1-cullin-beta-TrCP (SCFbeta-TrCP) complex and the anaphase-promoting complex (APCCdh1), are involved in Cdc25A degradation. Here we demonstrate that the transforming growth factor beta (TGF-beta)-Smad3 pathway promotes SCF(beta-TrCP)-mediated Cdc25A ubiquitination. Cells treated with TGF-beta, as well as cells transfected with Smad3 or a constitutively active type I TGF-beta receptor, exhibit increased ubiquitination and markedly shortened half-lives of Cdc25A. Furthermore, Cdc25A is stabilized in cells transfected with Smad3 small interfering RNA (siRNA) and cells from Smad3-null mice. TGF-beta-induced ubiquitination is associated with Cdc25A phosphorylation at the beta-TrCP docking site (DS82G motif) and physical association of Cdc25A with Smad3 and beta-TrCP. Cdc25A mutant proteins deficient in DS82G phosphorylation are resistant to TGF-beta-Smad3-induced degradation, whereas a Cdc25A mutant protein defective in APCCdh1 recognition undergoes efficient degradation. Smad3 siRNA inhibits beta-TrCP-Cdc25A interaction and Cdc25A degradation in response to TGF-beta. beta-TrCP2 siRNA also inhibits Smad3-induced Cdc25A degradation. In contrast, Cdh1 siRNA had no effect on Cdc25A down-regulation by Smad3. These data suggest that Smad3 plays a key role in the regulation of Cdc25A ubiquitination by SCFbeta-TrCP and that Cdc25A stabilization observed in various cancers could be associated with defects in the TGF-beta-Smad3 pathway.  相似文献   

6.
Cdc25A phosphatase regulates cell cycle progression by removing the inhibitory phosphates from cyclin-dependent kinases. Activity of Cdc25A depends on its phosphorylation status. During normal cell cycle progression and after DNA damage phosphorylation by Chk1 (or Chk2) triggers Cdc25A degradation via ubiquitin-proteasome pathway. In this study we investigate the role of various phosphorylation sites (Ser123, Ser75, Ser17 and Ser115) in the regulation of Cdc25A stability. We have shown that only S75A mutation abrogates Cdc25A degradation both in normal and stress conditions. We also studied the influence of stable form of Cdc25A on checkpoint progression after DNA damage. We have found out that delay in DNA synthesis after UV and IR does not depend on Cdc25A activity. However, the presence of stable Cdc25A increases the number of mitotic cells after these stresses.  相似文献   

7.
8.
The Cdc25 dual-specificity phosphatases control progression through the eukaryotic cell division cycle by activating cyclin-dependent kinases. Cdc25 A regulates entry into S-phase by dephosphorylating Cdk2, it cooperates with activated oncogenes in inducing transformation and is overexpressed in several human tumors. DNA damage or DNA replication blocks induce phosphorylation of Cdc25 A and its subsequent degradation via the ubiquitin-proteasome pathway. Here we have investigated the regulation of Cdc25 A in the cell cycle. We found that Cdc25 A degradation during mitotic exit and in early G(1) is mediated by the anaphase-promoting complex or cyclosome (APC/C)(Cdh1) ligase, and that a KEN-box motif in the N-terminus of the protein is required for its targeted degradation. Interestingly, the KEN-box mutated protein remains unstable in interphase and upon ionizing radiation exposure. Moreover, SCF (Skp1/Cullin/F-box) inactivation using an interfering Cul1 mutant accumulates and stabilizes Cdc25 A. The presence of Cul1 and Skp1 in Cdc25 A immunocomplexes suggests a direct involvement of SCF in Cdc25 A degradation during interphase. We propose that a dual mechanism of regulated degradation allows for fine tuning of Cdc25 A abundance in response to cell environment.  相似文献   

9.
The Cdc25C phosphatase is a key regulator of mitotic entry which activity is tightly regulatedby phosphorylation. In response to DNA damage, phosphorylation at serine 216 induces thecytosolic retention of Cdc25C through 14-3-3 binding. We previously reported the ability ofthe p14ARF tumor suppressor to induce the accumulation of inactive phospho-Cdc25C(Ser216)protein as well as a decrease of Cdc25C steady state level and correlated these events with ap53-independent G2 arrest. The aim of this study was to investigate the cellular signalingpathways involved in this process. By using specific pharmacological inhibitors, wedemonstrate that activation of the ERK1/2 MAP kinases pathway is involved in the p53-independent G2 checkpoint induced by p14ARF. Moreover, we show that activated P-ERK1/2bind and phosphorylate Cdc25C on its ser216 residue following p14ARF expression, therebyidentifying Cdc25C as a new ERK1/2 target. Importantly, we further show thatphosphorylation at Ser216 by phospho-ERK1/2 promotes Cdc25C ubiquitination andproteasomal degradation, suggesting that Cdc25C proteolysis is required for a sustained G2arrest in response to p14ARF. Taken together, these results demonstrate that the MAPK ERKsignaling pathway contributes to the p53-independent antiproliferative functions of p14ARF.Furthermore, they identify a new mechanism by which phosphorylation at serine 216participates to Cdc25C inactivation.  相似文献   

10.
14‐3‐3 proteins control various cellular processes, including cell cycle progression and DNA damage checkpoint. At the DNA damage checkpoint, some subtypes of 14‐3‐3 (β and ζ isoforms in mammalian cells and Rad24 in fission yeast) bind to Ser345‐phosphorylated Chk1 and promote its nuclear retention. Here, we report that 14‐3‐3γ forms a complex with Chk1 phosphorylated at Ser296, but not at ATR sites (Ser317 and Ser345). Ser296 phosphorylation is catalysed by Chk1 itself after Chk1 phosphorylation by ATR, and then ATR sites are rapidly dephosphorylated on Ser296‐phosphorylated Chk1. Although Ser345 phosphorylation is observed at nuclear DNA damage foci, it occurs more diffusely in the nucleus. The replacement of endogenous Chk1 with Chk1 mutated at Ser296 to Ala induces premature mitotic entry after ultraviolet irradiation, suggesting the importance of Ser296 phosphorylation in the DNA damage response. Although Ser296 phosphorylation induces the only marginal change in Chk1 catalytic activity, 14‐3‐3γ mediates the interaction between Chk1 and Cdc25A. This ternary complex formation has an essential function in Cdc25A phosphorylation and degradation to block premature mitotic entry after DNA damage.  相似文献   

11.
DNA-responsive checkpoints prevent cell-cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. Ser287 phosphorylation is a major locus of G2/M checkpoint control, although several checkpoint-independent kinases can phosphorylate this site. We reported previously that mitotic entry requires 14-3-3 removal and Ser287 dephosphorylation. We show here that DNA-responsive checkpoints also activate PP2A/B56delta phosphatase complexes to dephosphorylate Cdc25 at a site distinct from Ser287 (T138), the phosphorylation of which is required for 14-3-3 release. However, phosphorylation of T138 is not sufficient for 14-3-3 release from Cdc25. Our data suggest that creation of a 14-3-3 "sink," consisting of phosphorylated 14-3-3 binding intermediate filament proteins, including keratins, coupled with reduced Cdc25-14-3-3 affinity, contribute to Cdc25 activation. These observations identify PP2A/B56delta as a central checkpoint effector and suggest a mechanism for controlling 14-3-3 interactions to promote mitosis.  相似文献   

12.
We show that Claspin, an adaptor protein required for Chk1 activation, becomes degraded at the onset of mitosis. Claspin degradation was triggered by its interaction with, and ubiquitylation by, the SCFbetaTrCP ubiquitin ligase. This interaction was phosphorylation dependent and required the activity of the Plk1 kinase and the integrity of a betaTrCP recognition motif (phosphodegron) in the N terminus of Claspin. Uncoupling of Claspin from betaTrCP by mutating the conserved serines in Claspin's phosphodegron or by knocking down betaTrCP stabilized Claspin in mitosis, impaired Chk1 dephosphorylation, and delayed G2/M transition during recovery from cell cycle arrest imposed by DNA damage or replication stress. Moreover, the inability to degrade Claspin allowed partial reactivation of Chk1 in cells exposed to DNA damage after passing the G2/M transition. Our data suggest that degradation of Claspin facilitates timely reversal of the checkpoint response and delineates the period permissive for Chk1 activation during cell cycle progression.  相似文献   

13.
We have recently demonstrated that negative regulation of human Cdc25 protein phosphatases by phosphorylation at their 14-3-3 site can be antagonized through phosphorylation at an adjacent site in the -2 position.1 Based on structural homology for different Cdc25 phosphatases, a similar regulatory pathway also could be conserved in Xenopus embryos, where cell cycle checkpoints are not operational prior to the Midblastula Transition (MBT). Here, we demonstrate that before MBT, XeCdc25C is phosphorylated on Ser285, an analogous site to Ser214 in human Cdc25C or Ser307 Cdc25B.(1) Phosphorylation of Ser285 prevents subsequent inhibitory phosphorylation of XeCdc25C on Ser287, thus maintaining XeCdc25C in an active form. Mutation of Ser285 to alanine allows the reconstitution of a DNA damage replication checkpoint. This effect is completely dependent on Ser287 phosphorylation as additional mutation of Ser287 to alanine fully reversed the cell cycle inhibitory effect of Ser285A XeCdc25C. We propose that phosphorylation of XeCdc25C Ser285 may account for the lack of a DNA replication checkpoint in cleaving Xenopus embryos prior to the MBT.  相似文献   

14.
We have recently demonstrated that negative regulation of human Cdc25 protein phosphatases by phosphorylation at their 14-3-3 site can be antagonized through phosphorylation at an adjacent site in the -2 position.1 Based on structural homology for different Cdc25 phosphatases, a similar regulatory pathway also could be conserved in Xenopus embryos, where cell cycle checkpoints are not operational prior to the Midblastula Transition (MBT). Here, we demonstrate that before MBT, XeCdc25C is phosphorylated on Ser285, an analogous site to Ser214 in human Cdc25C or Ser307 in Cdc25B.1 Phosphorylation of Ser285 prevents subsequent inhibitory phosphorylation of XeCdc25C on Ser287, thus maintaining XeCdc25C in an active form. Mutation of Ser285 to alanine allows the reconstitution of a DNA damage replication checkpoint. This effect is completely dependent on Ser287 phosphorylation as additional mutation of Ser287 to alanine fully reversed the cell cycle inhibitory effect of Ser285A XeCdc25C. We propose that phosphorylation of XeCdc25C Ser285 may account for the lack of a DNA replication checkpoint in cleaving Xenopus embryos prior to the MBT.  相似文献   

15.
In Xenopus embryos, cell cycle elongation and degradation of Cdc25A (a Cdk2 Tyr15 phosphatase) occur naturally at the midblastula transition (MBT), at which time a physiological DNA replication checkpoint is thought to be activated by the exponentially increased nucleo-cytoplasmic ratio. Here we show that the checkpoint kinase Chk1, but not Cds1 (Chk2), is activated transiently at the MBT in a maternal/zygotic gene product-regulated manner and is essential for cell cycle elongation and Cdc25A degradation at this transition. A constitutively active form of Chk1 can phosphorylate Cdc25A in vitro and can target it rapidly for degradation in pre-MBT embryos. Intriguingly, for this degradation, however, Cdc25A also requires a prior Chk1-independent phosphorylation at Ser73. Ectopically expressed human Cdc25A can be degraded in the same way as Xenopus Cdc25A. Finally, Cdc25A degradation at the MBT is a prerequisite for cell viability at later stages. Thus, the physiological replication checkpoint is activated transiently at the MBT by developmental cues, and activated Chk1, only together with an unknown kinase, targets Cdc25A for degradation to ensure later development.  相似文献   

16.
Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2. We show here that Emi1 is phosphorylated by Cdc2, and on a DSGxxS consensus site, is subsequently recognized by the SCF(betaTrCP/Slimb) ubiquitin ligase and destroyed, thus providing a delay for APC activation. Failure of betaTrCP-dependent Emi1 destruction stabilizes APC substrates and results in mitotic catastrophe including centrosome overduplication, potentially explaining mitotic deficiencies in Drosophila Slimb/betaTrCP mutants. We hypothesize that Emi1 destruction relieves a late prophase checkpoint for APC activation.  相似文献   

17.
The Cdc25 phosphatase promotes entry into mitosis through the removal of inhibitory phosphorylations on the Cdc2 subunit of the Cdc2/CyclinB complex. During interphase, or after DNA damage, Cdc25 is suppressed by phosphorylation at Ser287 (Xenopus numbering; Ser216 of human Cdc25C) and subsequent binding of the small acidic protein, 14-3-3. As reported recently, at the time of mitotic entry, 14-3-3 protein is removed from Cdc25 and S287 is dephosphorylated by protein phosphatase 1 (PP1). After the initial activation of Cdc25 and consequent derepression of Cdc2/CyclinB, Cdc25 is further activated through a Cdc2-catalyzed positive feedback loop. Although the existence of such a loop has been appreciated for some time, the molecular mechanism for this activation has not been described. We report here that phosphorylation of S285 by Cdc2 greatly enhances recruitment of PP1 to Cdc25, thereby accelerating S287 dephosphorylation and mitotic entry. Moreover, we show that two other previously reported sites of Cdc2-catalyzed phosphorylation on Cdc25 are required for maximal biological activity of Cdc25, but they do not contribute to PP1 regulation and do not act solely through controlling S287 phosphorylation. Therefore, multiple mechanisms, including enhanced recruitment of PP1, are used to promote full activation of Cdc25 at the time of mitotic entry.  相似文献   

18.
During replicative stress, Claspin mediates the phosphorylation and consequent activation of Chk1 by ATR. We found that during recovery from the DNA replication checkpoint response, Claspin is degraded in a betaTrCP-dependent manner. In vivo, Claspin is phosphorylated in a canonical DSGxxS degron sequence, which is typical of betaTrCP substrates. Phosphorylation of Claspin is mediated by Plk1 and is essential for binding to betaTrCP. In vitro ubiquitylation of Claspin requires betaTrCP, Plk1, and an intact DSGxxS degron. Significantly, expression of a stable Claspin mutant unable to bind betaTrCP prolongs the activation of Chk1, thereby attenuating the recovery from the DNA replication stress response and significantly delaying entry into mitosis. Thus, the SCFbetaTrCP-dependent degradation of Claspin is necessary for the efficient and timely termination of the DNA replication checkpoint. Importantly, in response to DNA damage in G2, Claspin proteolysis is inhibited to allow the prompt reestablishment of the checkpoint.  相似文献   

19.
In response to DNA damage, cells activate a signaling pathway that promotes cell cycle arrest and degradation of the cell cycle regulator Cdc25A. Cdc25A degradation occurs via the SCFbeta-TRCP pathway and phosphorylation of Ser-76. Previous work indicates that the checkpoint kinase Checkpoint kinase 1 (Chk1) is capable of phosphorylating Ser-76 in Cdc25A, thereby promoting its degradation. In contrast, other experiments involving overexpression of dominant Chk2 mutant proteins point to a role for Chk2 in Cdc25A degradation. However, loss-of-function studies that implicate Chk2 in Cdc25A turnover are lacking, and there is no evidence that Chk2 is capable of phosphorylating Ser-76 in Cdc25A despite the finding that Chk1 and Chk2 sometimes share overlapping primary specificity. We find that although Chk2 can phosphorylate many of the same sites in Cdc25A that Chk1 phosphorylates, albeit with reduced efficiency, Chk2 is unable to efficiently phosphorylate Ser-76. Consistent with this, Chk2, unlike Chk1, is unable to support SCFbeta-TRCP-mediated ubiquitination of Cdc25A in vitro. In CHK2(-/-) HCT116 cells, the kinetics of Cdc25A degradation in response to ionizing radiation is comparable with that seen in HCT116 cells containing Chk2, indicating that Chk2 is not generally required for timely DNA damage-dependent Cdc25A turnover. In contrast, depletion of Chk1 by RNA interference in CHK2(-/-) cells leads to Cdc25A stabilization in response to ionizing radiation. These data support the idea that Chk1 is the primary signal transducer linking activation of the ATM/ATR kinases to Cdc25A destruction in response to ionizing radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号