首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
由于线粒体在生物氧化和能量转换过程中会产生活性氧,线粒体DNA又比核DNA更容易发生突变,因此线粒体是一种比较容易受到损伤的细胞器.及时清除细胞内受损的线粒体对细胞维持正常的状态具有重要的作用.细胞主要通过自噬来清除损伤线粒体,维持细胞稳态.越来越多的研究表明,线粒体自噬是一种特异性的过程,线粒体通透性孔道通透性的改变在这个过程中起着重要的作用.线粒体自噬在维持细胞内线粒体的正常功能和基因组稳定性上起着重要作用,但是线粒体发生自噬的信号通路及其调控机制还有待进一步深入研究.  相似文献   

2.
程婧  魏林  李苗 《生理学报》2020,72(4):475-487
线粒体形态和功能的异常与多种疾病的发生密切相关。线粒体通过不断的分裂和融合,维持线粒体网络的动态平衡,该过程称为线粒体动力学,是维持线粒体形态、分布和数量,保证细胞稳态的重要基础。此外,机体还通过线粒体自噬过程降解胞内功能异常的线粒体,维持线粒体稳态。线粒体动力学与线粒体自噬二者之间可相互调控,共同维持线粒体质量平衡。探讨线粒体动力学和线粒体自噬的调控机制对揭示多种疾病发生的分子机制、开发新的靶向线粒体动力学蛋白或线粒体自噬调控蛋白的药物具有重要意义。本文从线粒体动力学与线粒体自噬出发,对线粒体动力学调控机制、线粒体自噬及其发生机制以及二者的相互作用关系、线粒体动力学及线粒体自噬与人类相关疾病等方面作一综述。  相似文献   

3.
胰岛素抵抗(IR)是诱发许多代谢疾病的关键因素,包括代谢综合征、非酒精性脂肪性肝病、动脉粥样硬化和2型糖尿病(T2DM)。随着相关代谢疾病日益增多,寻找新的治疗靶点迫在眉睫。线粒体自噬是一种选择性自噬,其通过清除受损和功能失调的线粒体以维持正常线粒体功能和能量代谢。研究发现,线粒体自噬在代谢疾病中有积极作用,线粒体自噬受到各种信号通路与信号分子调控而改善代谢疾病,如AMPK/ULK1、PINK1/Parkin信号通路以及BNIP3/Nix和FUNDC1等信号分子。本文阐述了线粒体自噬在胰岛素抵抗中的作用及调控机制,综述了近年的相关研究进展。  相似文献   

4.
线粒体自噬     
细胞自噬(autophagy)是细胞依赖溶酶体对蛋白和细胞器进行降解的一条重要途径.目前,将通过细胞自噬降解线粒体的途径称为线粒体自噬(mitophagy).最近几年的证据表明,线粒体自噬是一个特异性的选择过程,并受到各种因子的精密调节,是细胞清除体内损伤线粒体和维持自身稳态的一种重要调节机制.自噬相关分子,如“核心”Atg 复合物,酵母线粒体外膜分子Atg32、Atg33、Uth1和Aup1,哺乳细胞线粒体外膜蛋白PINK1、NIX和胞质的Parkin等,在线粒体自噬中起关键的作用. 线粒体自噬异常与神经退行性疾病如帕金森氏病(Parkinson’s disease,PD)的发生密切相关. 本文就线粒体自噬的研究进展做简要的介绍.  相似文献   

5.
线粒体为细胞正常生命活动提供物质和能量,然而各种因素会导致线粒体损伤,衰老及功能紊乱。线粒体自噬是维持细胞稳态,及时清除细胞潜在危险因素的关键过程,FUNDC1是新近发现的一种线粒体自噬受体蛋白,在介导线粒体自噬方面有重要作用。运动是激活线粒体自噬的应激条件,其诱导骨骼肌线粒体自噬及FUNDC1在此过程中的作用机制正逐步明确。本文介绍FUNDC1的结构、功能和调节,分析FUNDC1与线粒体分裂、融合、自噬的关系,探讨运动诱导线粒体自噬过程中FUNDC1的调控机制,为进一步研究提供参考依据。  相似文献   

6.
线粒体自噬(mitophagy)是指细胞通过自噬的机制选择性地清除线粒体的过程。选择性清除受损伤或功能不完整的线粒体对于整个线粒体网络的功能完整性和细胞生存来说十分关键。线粒体自噬的异常和很多疾病密切相关,因此对于线粒体自噬的具体分子机制以及生理意义研究有很重要的生物学意义。线粒体自噬的研究是目前生物学领域的研究热点,该文主要综述了近年来在线粒体自噬领域取得的研究进展,旨在为相关领域的研究提供参考。  相似文献   

7.
氧化应激下植物线粒体自噬分析   总被引:1,自引:0,他引:1  
线粒体自噬,是指通过选择性的识别并清除损伤、衰老及功能紊乱的线粒体,对维持细胞内线粒体质量和数量的平衡产生了重要作用。与动物和酵母中线粒体自噬的研究进展相比,植物线粒体自噬的途径及具体调控机制尚不明确。基于GFP标签,本文探究了氧化胁迫下植物线粒体自噬发生情况。研究发现甲基紫精诱导线粒体在液泡中积累,并呈现两种状态:1) GFP小体包含的线粒体; 2)不含GFP的线粒体。本研究发展的GFP标签策略可为植物线粒体自噬关键调控因子的筛选提供借鉴。  相似文献   

8.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

9.
线粒体自噬(mitophagy)是指细胞通过自噬机制选择性清除多余或损伤线粒体的过程,对于线粒体质量控制以及细胞生存具有重要作用。在线粒体自噬的过程中,线粒体自噬受体FUNDCl、Nix、BNIP3,接头蛋白OPTN、NDP52以及去泛素化酶UPS30、UPS8等发挥了重要的调控作用。近年来,研究发现线粒体自噬与神经退行性疾病、脑损伤以及胶质瘤相关。因此,研究线粒体自噬的分子机制具有重要意义。本文就与哺乳动物相关的线粒体自噬分子机制及最新研究进展做一综述。  相似文献   

10.
低氧是一种典型的应激环境,细胞在低氧条件下能量和氧化代谢发生改变,其中线粒体产生的大量活性氧严重威胁细胞的存活.线粒体自噬是近年来被发现的细胞适应低氧的一种适应性代谢反应.细胞在低氧条件下能通过上调低氧诱导因 子1(HIF-1),激活BNIP3/BNIP3L及Beclin-1介导的通路诱导线粒体自噬,最终减少ROS的产生,促进细胞的存活,使机体产生低氧适应.综述了线粒体自噬在低氧适应中的作用及其机制.  相似文献   

11.
Mitophagy plays pivotal roles in the selective disposal of unwanted mitochondria, and accumulation of damaged mitochondria has been linked to aging-related diseases. However, definitive proof that mitophagy regulates mitochondrial quality in vivo is lacking. It is also largely unclear whether damaged mitochondria are the cause or just the consequence of these diseases. We previously showed that FUNDC1 is a mitophagy receptor that interacts with LC3 to mediate mitophagy in response to hypoxia in cultured cells. We established Fundc1 knockout mouse models and used genetic and biochemical approaches, including a synthetic peptide that blocks the FUNDC1-LC3 interaction, to demonstrate that mitophagy regulates both mitochondrial quantity and quality in vivo in response to hypoxia or hypoxic conditions caused by ischemia-reperfusion (I/R) heart injury. We found that hypoxic mitophagy regulates platelet activities. Furthermore, we found that hypoxic preconditioning induces FUNDC1-dependent mitophagy in platelets and reduces I/R-induced heart injury, suggesting a new strategy to protect cardiac function and fight cardiovascular diseases.  相似文献   

12.
线粒体自噬作为一种选择性自噬方式是近年研究的热点。细胞通过自噬机制选择性清除受损伤或不必需的线粒体,从而维持其功能稳态。近年来,越来越多的研究聚焦于病原体通过胁迫线粒体自噬在机体感染过程中调节先天免疫信号通路,从而影响感染性疾病的进程。本文分别从线粒体自噬在病毒、细菌和真菌感染性疾病中的作用机制研究进展进行综述,以期为感染性疾病的防治提供新的指导策略。  相似文献   

13.
Tafazzin (TAZ) is a phospholipid transacylase that catalyzes the remodeling of cardiolipin, a mitochondrial phospholipid required for oxidative phosphorylation. Mutations of TAZ cause Barth syndrome, which is characterized by mitochondrial dysfunction and dilated cardiomyopathy, leading to premature death. However, the molecular mechanisms underlying the cause of mitochondrial dysfunction in Barth syndrome remain poorly understood. Here we investigated the role of TAZ in regulating mitochondrial function and mitophagy. Using primary mouse embryonic fibroblasts (MEFs) with doxycycline-inducible knockdown of Taz, we showed that TAZ deficiency in MEFs caused defective mitophagosome biogenesis, but not other autophagic processes. Consistent with a key role of mitophagy in mitochondria quality control, TAZ deficiency in MEFs also led to impaired oxidative phosphorylation and severe oxidative stress. Together, these findings provide key insights on mitochondrial dysfunction in Barth syndrome, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for this lethal condition.  相似文献   

14.
Zhiyuan Yao 《Autophagy》2016,12(11):1971-1972
Many vital metabolic pathways take place in mitochondria, but some of the associated processes generate toxic substances including reactive oxygen species that can damage proteins and DNA. Therefore, it is critical to maintain normally functioning mitochondria to achieve proper cellular homeostasis. Along these lines, mitochondrial dysfunction is associated with numerous diseases, and mitochondria quality control is essential for cell survival. The maintenance of functioning mitochondria is particularly important in aging cells, and there is a strong relationship between cellular aging and dysfunctional mitochondria. The best characterized pathway that is responsible for the elimination of damaged mitochondria is mitophagy, a selective type of autophagy. In yeast, mitophagy requires the mitochondrial protein Atg32 to serve as a receptor for recognition and sequestration by a phagophore. Although conventional mitophagy has been extensively studied, recent research suggests that an unconventional pathway, which is independent of Atg32, contributes to the removal of mitochondria.  相似文献   

15.
Cigarette smoke-induced airway epithelial cell mitophagy is an important mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mitochondrial protein Nix (also known as BNIP3L) is a selective autophagy receptor and participates in several human diseases. However, little is known about the role of Nix in airway epithelial cell injury during the development of COPD. The aim of the present study is to investigate the effects of Nix on mitophagy and mitochondrial function in airway epithelial cells exposed to cigarette smoke extract (CSE). Our present study has found that CSE could increase Nix protein expression and induce mitophagy in airway epithelial cells. And Nix siRNA significantly inhibited mitophagy and attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. In contrast, Nix overexpression enhanced mitophagy and aggravated mitochondrial dysfunction and cell injury when airway epithelial cells were incubated with 7.5% CSE. These data suggest that Nix-dependent mitophagy promotes airway epithelial cell and mitochondria injury induced by cigarette smoke, and may be involved in the pathogenesis of COPD and other cigarette smoke-associated diseases.  相似文献   

16.
Evandro F. Fang 《Autophagy》2017,13(2):442-443
ATM is a 350 kDa serine/threonine kinase best known for its role in DNA repair and multiple cellular homeostasis pathways. Mutation in ATM causes the disease ataxia telangiectasia (A-T) with clinical features including ataxia, severe cerebellar atrophy and Purkinje cell loss. In a cross-species study, using primary rat neurons, the roundworm C. elegans, and a mouse model of A-T, we showed that loss of ATM induces mitochondrial dysfunction and compromised mitophagy due to NAD+ insufficiency. Remarkably, NAD+ repletion mitigates both the DNA repair defect and mitochondrial dysfunction in ATM-deficient neurons. In C. elegans, NAD+ repletion can clear accumulated dysfunctional mitochondria through restoration of compromised mitophagy via upregulation of DCT-1. Thus, NAD+ ties together DNA repair and mitophagy in neuroprotection and intimates immediate translational applications for A-T and related neurodegenerative DNA repair-deficient diseases.  相似文献   

17.
The selective degradation of mitochondria by the process of autophagy, termed mitophagy, is one of the major mechanisms of mitochondrial quality control. The best-studied mitophagy pathway is the one mediated by PINK1 and PARK2/Parkin. From recent studies it has become clear that ubiquitin-ligation plays a pivotal role and most of the focus has been on the role of ubiquitination of mitochondrial proteins in mitophagy. Even though ubiquitination is a reversible process, very little is known about the role of deubiquitinating enzymes (DUBs) in mitophagy. Here, we report that 2 mitochondrial DUBs, USP30 and USP35, regulate PARK2-mediated mitophagy. We show that USP30 and USP35 can delay PARK2-mediated mitophagy using a quantitative mitophagy assay. Furthermore, we show that USP30 delays mitophagy by delaying PARK2 recruitment to the mitochondria during mitophagy. USP35 does not delay PARK2 recruitment, suggesting that it regulates mitophagy through an alternative mechanism. Interestingly, USP35 only associates with polarized mitochondria, and rapidly translocates to the cytosol during CCCP-induced mitophagy. It is clear that PARK2-mediated mitophagy is regulated at many steps in this important quality control pathway. Taken together, these findings demonstrate an important role of mitochondrial-associated DUBs in mitophagy. Because defects in mitochondria quality control are implicated in many neurodegenerative disorders, our study provides clear rationales for the design and development of drugs for the therapeutic treatment of neurodegenerative diseases such as Parkinson and Alzheimer diseases.  相似文献   

18.
Cardiolipin (CL) is a mitochondrial signature phospholipid that is required for membrane structure, respiration, dynamics, and mitophagy. Oxidative damage of CL by reactive oxygen species is implicated in the pathogenesis of Parkinson's disease (PD), but the underlying cause remains elusive. This work investigated the role of ALCAT1, an acyltransferase that catalyzes pathological remodeling of CL in various aging‐related diseases, in a mouse model of PD induced by 1‐methyl‐4‐phenyl‐1,2,4,6‐tetrahydropyridine (MPTP). We show that MPTP treatment caused oxidative stress, mtDNA mutations, and mitochondrial dysfunction in the midbrain. In contrast, ablation of the ALCAT1 gene or pharmacological inhibition of ALCAT1 prevented MPTP‐induced neurotoxicity, apoptosis, and motor deficits. ALCAT1 deficiency also mitigated mitochondrial dysfunction by modulating DRP1 translocation to the mitochondria. Moreover, pharmacological inhibition of ALCAT1 significantly improved mitophagy by promoting the recruitment of Parkin to dysfunctional mitochondria. Finally, ALCAT1 expression was upregulated by MPTP and by α‐synucleinopathy, a key hallmark of PD, whereas ALCAT1 deficiency prevented α‐synuclein oligomerization and S‐129 phosphorylation, implicating a key role of ALCAT1 in the etiology of mouse models of PD. Together, these findings identify ALCAT1 as a novel drug target for the treatment of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号