首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同轮伐期对杉木人工林碳固存的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
在全球气候变化背景下, 科学的经营管理是人工林碳汇提升的主要途径。合理轮伐期从一定程度上反映了人工林集约经营的理念, 是实现森林结构调整的主要影响因素之一。杉木(Cunninghamia lanceolata)多代连栽出现立地生产力下降与轮伐期的选择密切相关, 开展不同轮伐期对杉木人工林碳固存影响的研究, 可为其可持续经营提供理论依据。通过设置不同年龄序列的杉木人工林野外观测样地, 应用野外观测数据对FORECAST模型进行验证, 在此基础上模拟不同轮伐期对其碳固存的影响。结果表明: (1)短轮伐期(15年)在150年间的总固碳量较高, 但固碳持久性较低, 每个轮伐期之间的固碳量下降幅度较大, 是一种不可持续的经营模式。(2)正常轮伐期(25年)和长轮伐期(50年)的总固碳量低于短轮伐期, 但长轮伐期固碳持久性更强, 有利于维持每个轮伐期内固碳量的稳定。(3)在好的立地条件下(立地指数(SI) = 27), 轮伐期越短对地力消耗影响越大, 为了碳固存的持久性, 建议杉木人工林的生态轮伐期选择在25年以上。(4)应用FORECAST模型可以定量地评估人工林的固碳能力, 且该固碳能力是基于不同经营管理措施下的可持续固碳能力。  相似文献   

2.
《植物生态学报》2016,40(4):318
Aims
Sparse Ulmus pumila forest is an intrazonal vegetation in Onqin Daga Sandy Land, while Populus simonii has been widely planted for windbreak and sand dune stabilization in the same region. Our objective was to compare the differences in carbon (C) density of these two forests and their relationships with stand age.
Methods
We measured the C content of tree organs (leaf, twig, stem, and root), herb layers (above ground vegetation and below ground root) and soil layers (up to 100 cm) in sparse Ulmus pumila forests and Populus simonii plantations of different stand ages, and then computed C density and their proportions in total ecosystem carbon density. In addition, we illustrated the variation in carbon density-stand age relationship for tree layer, soil layer and whole ecosystem. We finally estimated the C sequestration rates for these two forests by the space-for-time substitution approach.
Important findings
The average C contents of tree layer and soil layer for sparse Ulmus pumila forests were lower than those for Populus simonii plantations. The total C density of sparse Ulmus pumila forests was half of that of Populus simonii plantations. The carbon density of soil and tree layers accounted for more than 98% of ecosystem C density in the two forests. Irrespective of forest type, the C density ratios of soil to vegetation decreased with stand age. This ratio was 1.66 for sparse Ulmus pumila forests and 1.87 for Populus simonii plantations when they were over-matured. The C density of tree layer, soil layer, and total ecosystem in both forests increased along forest development. There were significantly positive correlations between tree layer’s C density and stand age in both forests and between the total ecosystem C density of sparse Ulmus pumila forests and stand age. The C sequestration rate of tree layer was 5-fold higher in Populus simonii plantation than in sparse Ulmus pumila forest. The ecosystem-level C sequestration rate was 0.81 Mg C·hm-2·a-1 for sparse Ulmus pumila forest and 5.35 Mg C·hm-2·a-1 for Populus simonii plantation. These findings have implications for C stock estimation of sandy land forest ecosystems and policy-making of ecological restoration and C sink enhancement in the studied area.  相似文献   

3.
《植物生态学报》2016,40(4):304
Aims
Carbon sequestration is the basic function and most primary service of forest ecosystems, and plays a vital role in mitigating the global climate change. However, carbon storage and allocation in forest ecosystems have been less studied at regional scales than at forest stand levels, and the results are subject to uncertainty due to inconsistent methodologies. In this study we aim to obtain relatively accurate estimates of forest carbon stocks and sequestration rate at a provincial scale (regional) based on plot surveys of plants and soils.
Methods
In consideration of the areas and distributions of major forest types, 212 sampling plots, covering different age classes and origins (natural forests vs. planted forests), were surveyed in Gansu Province in northern China. Field investigations were conducted for vegetation layers (trees, shrubs, herbs and litter), soil profiles, and sampling of both plant materials and soils for laboratory analyses. Regional carbon stocks were calculated by up-scaling the carbon densities of all forest types with their corresponding areas. Carbon sequestration rate was estimated by referencing the reports of national forest inventory data for different periods.
Important findings Forest carbon stocks at the provincial scale were estimated at 612.43 Tg C, including 179.04 Tg C in biomass and 433.39 Tg C in soil organic materials. Specifically, natural forests stored 501.42 Tg C, approximately 4.52 times than that of the plantations. Biomass carbon density in both natural forests and plantations showed an increasing trend with stand age classes, and was greater in natural forests than in plantations within the same age classes. Soil carbon density also increased with stand age classes in natural forests, but the highest value occurred at the pre-mature stage in plantations. The weighted average of regional biomass carbon density was at 72.43 Mg C·hm-2, with the average value of 90.52 Mg C·hm-2 in natural forests and 33.79 Mg C·hm-2 in plantations, respectively. In 1996, vegetation stored 132.47 Tg C in natural forests and 12.81 Tg C in plantations, respectively, and the values increased to 152.41 and 26.63 Tg C in 2011, with the mean carbon sequestration rates of 1.33 and 0.92 Tg C·a-1. Given that young and middle-aged forests account for a large proportion (62.28%) of the total forest areas, the region is expected to have substantial potential of carbon sequestration.  相似文献   

4.
《植物生态学报》2016,40(4):374
Aims
Our objective was to explore the vegetation carbon storages and their variations in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau that includes Qinghai Province and Xizang Autonomous Region.
Methods
Based on forest resource inventory data and field sampling, this paper studied the carbon storage, its sequestration rate, and the potentials in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau.
Important findings
The vegetation carbon storage in the broad-leaved forest accounted for 310.70 Tg in 2011, with the highest value in the broad-leaved mixed forest and the lowest in Populus forest among the six broad-leaved forests that include Quercus, Betula, Populus, other hard broad-leaved species, other soft broad-leaved species, and the broadleaved mixed forest. The carbon density of the broad-leaved forest was 89.04 Mg·hm-2, with the highest value in other hard broad-leaved species forest and the lowest in other soft broad-leaved species forest. The carbon storage and carbon density in different layers of the forests followed a sequence of overstory layer > understory layer > litter layer > grass layer > dead wood layer, which all increased with forest age. In addition, the carbon storage of broad-leaved forest increased from 304.26 Tg in 2001 to 310.70 Tg in 2011. The mean annual carbon sequestration and its rate were 0.64 Tg·a-1 and 0.19 Mg·hm-2·a-1, respectively. The maximum and minimum of the carbon sequestration rate were respectively found in other soft broad-leaved species forest and other hard broad-leaved species forest, with the highest value in the mature forest and the lowest in the young forest. Moreover, the carbon sequestration potential in the tree layer of broad-leaved forest reached 19.09 Mg·hm-2 in 2011, with the highest value found in Quercus forest and the lowest in Betula forest. The carbon storage increased gradually during three inventory periods, indicating that the broad-leaved forest was well protected to maintain a healthy growth by the forest protection project of Qinghai Province and Xizang Autonomous Region.  相似文献   

5.
《植物生态学报》2018,42(8):831
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

6.
人工林碳汇潜力新概念及应用   总被引:5,自引:0,他引:5  
定量确定森林碳汇潜力有助于科学地评估森林对碳汇的潜在贡献及制定实现这种潜力所需要的经营管理措施。目前,国内外有关森林碳汇潜力缺乏统一的概念及计量方法。在综述国内外有关固碳潜力概念的基础上,引入时间动态构架和可持续性的概念,提出了针对人工林的固碳潜力概念并利用FORECAST模型以杉木人工林为例阐明此概念的实际意义与应用。  相似文献   

7.
《植物生态学报》2016,40(4):405
Aims
Plantations play important roles in modifying regional carbon budget and maintaining regional carbon balance. In this study, we assessed larch plantation (Larix gmelinii var. principis-rupprechtii) carbon dynamics in Weichang County from a perspective of the forest biomass-soil-wood-products chain. Our objectives were to elucidate the carbon sink capacity of larch plantation and the influences of biomass, soil and wood product pools on carbon balance.
Methods
CO2FIX model was used to evaluate the carbon storage and flow of larch plantation over a time span of 120 years. Input data for model were derived from practical investigations and published papers. We validated the simulated results and found that this model was suitable in the region and the simulated results were reliable.
Important findings
(1) Soil was the largest carbon pool for larch plantation and the wood product pool had the smallest carbon storage. Meanwhile, carbon storage in wood products gradually increased with time. (2) In a rotation of 50 years from secondary poplar-birch forest to larch plantation, 250 t C·hm-2 was sequestrated by the larch plantation. 70% of the carbon was transferred into soil in the form of litter and logging slash and the other 30% was transferred into wood products. (3) Larch plantation was a carbon sink during most of its growing period and turned to temporary carbon source when it was harvested. Larch plantation could sequestrate about 0.3 t C·hm-2·a-1 in the long term. Our results indicated the importance of wood product carbon pool in carbon dynamics of plantation, which facilitated our understanding in the carbon dynamics and capacity of plantation.  相似文献   

8.
《植物生态学报》2016,40(4):395
Aims
This study was conducted to investigate carbon stocks in forest ecosystems of different stand ages in Anhui Province, and to identify the carbon sequestration potential of climax forests controlled by the natural environment conditions.
Methods
Data were collected based on field investigations and simulations were made with the BIOME4 carbon cycle model.
Important findings
Currently, the total forest carbon stocks in Anhui Province amounts to 714.5 Tg C: 402.1 Tg C in vegetation and 312.4 Tg C in soil. Generally, both the total and vegetation carbon density exhibit an increasing trend with the natural growth of forest stands. Soil carbon density increases from young to near mature forests, and then gradually decreases thereafter. Young and middle-aged forests account for 75% of the total forest area in Anhui Province, with potentially an additional 125.4 Tg C to be gained after the young and middle-aged forests reach near mature stage. Results of BIOME4 simulations show that potentially an additional 245.7 Tg C, including 153.7 Tg C in vegetation and 92 Tg C in soil, could be gained if the current forests are transformed into climax forest ecosystems in Anhui Province.  相似文献   

9.
《植物生态学报》2017,41(9):953
Aims The bank of soil carbon of forests plays an important role in the global carbon cycle. Our aim is to understand the characteristics of soil carbon storage and its determinants in the forests in Shaanxi Province.Methods The data of forest inventory in 2009 and resampling in 2011 were used to analyze the characteristics of soil carbon storage and its determinants in the forest soil in Shaanxi Province.Important findings The soil carbon storage in the forests in Shaanxi Province was 579.68 Tg. Soil carbon storage of Softwood and Hardwood forests were the highest among all forest types, accounting for 36.35% of the whole province forest soil carbon storage. The forest soil carbon storage was 4.15 times greater in the natural forest (467.17 Tg) than that in the plantations. The young and middle-aged forests were the main contributors to the total carbon storage across all age groups, accounting for about 57.30% of the total forest soil carbon storage. The average soil carbon density of forests in Shaanxi Province was 90.68 t∙hm-2, in which the soil carbon density of Betula forests was the highest (141.74 t∙hm-2). Soil carbon density of different forest types were gradually decreased with soil depth. In addition, it was highest in middle-aged forest. Soil carbon density was higher in the natural forest ecosystems than that in the plantations within the each age group, indicating natural forest ecosystems have higher capacity of carbon sequestration. Differences in the spatial patterns between carbon storage and density indicated that carbon storage was related to forest coverage. The soil carbon density and storage of forests in Yulin were the lowest across the province. This suggests that, in order to enhance the regional carbon sequestration capacity in this region, we need to appropriately strengthen artificial afforestation activities and manage them scientifically and rationally. The soil carbon density of forests in Shaanxi Province decreased with the increase of longitude, latitude, and annual temperature, but increased with the increase of altitude and annual rainfall. This study provides data basis for provincial estimation of forest soil carbon bank in China.  相似文献   

10.
《植物生态学报》2016,40(7):643
Aims Subtropical forest ecosystem has great carbon sequestration capacity. Net primary productivity (NPP) plays a critical role in forest carbon cycle and is affected by a number of factors, including climate change, atmospheric composition, forest disturbance intensity and frequency, and forest age, etc. However, the contribution of these factors to the temporal-spatial dynamics of NPP is still not clear. Quantifying the main driving forces on the temporal-spatial dynamics of NPP for subtropical forest ecosystems is a critical foundation for understanding their carbon cycle.
Methods We utilized multi-sources dataset, including observed meteorological data, inversed annual maximum leaf area index (LAI), referenced NPP (simulated by Boreal Ecosystem Productivity Simulator (BEPS) model), forest age and forest types, land cover, digital elevation model (DEM), soil texture, CO2 concentration and nitrogen deposition. We used the InTEC (integrated terrestrial ecosystem carbon-budget) model to simulate the NPP dynamics for forest ecosystems in Jiangxi Province during the period of 1901-2010. The effects of climate change, forest age, CO2 concentration and nitrogen (N) deposition on forest NPP from 1970 to 2010 were discussed through designed scenarios.
Important findings (1) Validations by flux measurements and forest inventory data indicated that the InTEC model was able to capture the interannual and spatial variations of forest NPP. (2) The average forest NPP was 47.7 Tg C·a-1 (± 4.2 Tg C·a-1) during 1901-2010. The NPP in the 1970s, 1980s, 1990s and 2000s was 50.7, 48.8, 45.4, and 55.2 Tg C·a-1, respectively. As forest regrows, NPP significantly increased for forests in Jiangxi Province in the 2000s, and exceed that in the 1970s for more than 60% of the forest area. (3) During 1970-2010, under the scenarios of disturbance and non-disturbance, the forest NPP were underestimated by 7.3 Tg C·a-1 (14.5%) and overestimated by 3.6 Tg C·a-1 (7.1%) compared to the scenarios of all disturbance and non-disturbance factors, respectively. Compared to the average NPP during 1970-2010, climate change decreased NPP by -2.0 Tg C·a-1 (-4.7%), N deposition increased NPP by 4.5 Tg C·a-1 (10.4%), CO2 concentration change, and the integrated fertilization of CO2 and N deposition increased NPP by 4.4 Tg C·a-1 (10.3%) and 9.4 Tg C·a-1 (21.8%), respectively.  相似文献   

11.
《植物生态学报》2016,40(4):341
Aims
Forests represent the most important component of the terrestrial biological carbon pool and play an important role in the global carbon cycle. The regional scale estimation of carbon budgets of forest ecosystems, however, have high uncertainties because of the different data sources, estimation methods and so on. Our objective was to accurately estimate the carbon storage, density and sequestration rate in forest vegetation in Jilin Province of China, in order to understand the role of the carbon sink and to better manage forest ecosystems.
Methods
Vegetation survey data were used to determine forest distribution, size of area and vegetation types regionally. In our study, 561 plots were investigated to build volume-biomass models; 288 plots of shrubs and herbs were harvested to calculate the biomass of understory vegetation, and samples of trees, shrubs and herbs were collected to analyze carbon content. Carbon storage, density and sequestration rate were estimated by two forest inventory data (2009 and 2014), combined with volume-biomass models, the average biomass of understory vegetation and carbon content of vegetation. Finally, the distribution patterns of carbon pools were presented using ArcGIS soft ware.
Important findings
Understory vegetation biomass overall was less than 3% of the tree layer biomass, varying greatly among different forest types and even among the similar types. The carbon content of trees was between 45.80%-52.97%, and that of the coniferous forests was higher than that of the broadleaf forests. The carbon content of shrub and herb layers was about 39.79%-47.25% and 40%, respectively. Therefore, the vegetation carbon conversion coefficient was 0.47 or 0.48 in Jilin Province, and the conventional use of 0.50 or 0.45 would cause deviation of ±5.26%. The vegetation carbon pool of Jilin Province was at the upper range of regional carbon pool and had higher capacity of carbon sequestration. The value in 2009 and 2014 was 471.29 Tg C and 505.76 Tg C, respectively, and the total increase was 34.47 Tg C with average annual growth of 6.89 Tg C·a-1. The corresponding carbon sequestration rate was 0.92 t·hm-2·a-1. The carbon density rose from 64.58 t·hm-2 in 2009 to 66.68 t·hm-2 in 2014, with an average increase of 2.10 t·hm-2. In addition, the carbon storage of the Quercus mongolica forests and broadleaved mixed forests, accounted for 90.34% of that of all forests. The carbon increment followed the order of young > over-mature > near mature > middle-aged > mature forests. The carbon sequestration rate of followed the order of over-mature > young > near mature > middle-aged > mature forests. Both the carbon increment and the carbon sequestration rate of mature forests were negative. Furthermore, spatially the carbon storage and density were higher in the east than in the west of Jilin province, while the carbon increment was higher in northeast and middle east than in the west. The carbon sequestration rate was higher in Tonghua and Baishan in the south, followed by Jinlin in the middle and Yanbian in the east, while Baicheng and Songyuan, etc. in west showed negative values.  相似文献   

12.
罗云建  张小全 《生态学报》2007,27(2):715-724
收集了有关杉木连栽的地力退化和连栽杉阔混交林的对比研究文献,并进行分析表明,杉阔混交林土壤容重平均比杉木纯林降低5%;连栽杉木人工林随代数的增加呈现容重变大的趋势,2代比1代平均增加6%,3代比2代平均增加9%。这种容重的变化使看似具有可比性的对比样地之间失去了可比性,可能导致对杉木连栽人工林地力退化和杉阔混交林的土壤改良作用的评价产生偏差。通过对这种容重变化产生的影响进行校正,对杉木连栽人工林地力退化和杉阔混交林的土壤改良作用进行了重新评估。结果表明,采用固定深度采样的杉阔混交林与对照的杉木纯林、多代连栽杉木人工林不同代次问土壤有机碳和全氮贮量的相对变化均出现不同程度的低估现象。固定深度采样时,与对照的纯林相比,杉阔混交林对土壤的改良作用被低估,土壤有机碳和全氮贮量的相对变化平均低估6%和5%;杉木连栽引起的地力退化也被低估,土壤有机碳和全氮贮量从1代到2代分别低估5%和7%,从2代到3代分别低估7%和8%。经t-检验表明,杉阔混交林与对照的杉木纯林、多代连栽杉木人工林不同代次间土壤有机碳和全氮贮量的相对变化在土壤容重影响校正前后有明显差异(P=0.05)。  相似文献   

13.
《植物生态学报》2014,38(8):821
为了探究植物与固碳相关属性在不同功能群、器官和物种间的差异, 以及这些属性对不同土地利用方式的响应, 2012年8月对内蒙古大针茅草原的4个样地(长期无干扰样地、长期自由放牧样地、4年围封样地和4年围封割草样地)进行了群落调查, 并采集样地中的常见植物, 测定了与植物固碳相关的属性, 包括全碳含量、全氮含量、碳氮比、纤维素含量、木质素含量和酸性洗涤纤维含量等。以常见植物为对象, 在功能群水平研究了各土地利用方式下全碳含量、全氮含量和碳氮比的差异; 针对各样地的共有种——糙隐子草(Cleistogenes squarrosa)、大针茅(Stipa grandis)、冷蒿(Artemisia frigida)、羊草(Leymus chinensis)和猪毛菜(Salsola collina), 从物种和器官水平分析了不同土地利用方式下植物的固碳相关属性。结果表明: 大针茅草原植物不同功能群、物种和器官间的固碳相关属性存在极显著差异, 不同土地利用方式下大针茅草原不同功能型、物种和器官的固碳相关属性有显著差异。与其他利用方式相比, 4年围封割草对植物与固碳相关属性的影响最为明显, 功能群、器官和物种水平的植物氮含量均有下降。糙隐子草和猪毛菜的这些属性对长期自由放牧的响应敏感, 且方向相反。  相似文献   

14.
《植物生态学报》2016,40(4):354
Aims
The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China.
Methods
By using the 8th forest resource inventory data and 2011-2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province.
Important findings
The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t·hm-2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t·hm-2, 3.36 t·hm-2, 2.28 t·hm-2 and 90.51 t·hm-2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   

15.
为揭示土壤养分和细菌群落对林下植被调控的响应机制, 调查了浙江开化3种林分密度(高密度(KH)、中密度(KM)和低密度(KL))的17年生杉木人工林林下植被和生物量, 测定土壤理化性质, 并基于16S rDNA高通量测序技术分析细菌群落结构变化。结果表明, 3种密度的杉木林下植被地上部分总生物量为0.10-2.10 t·hm-2, 且优势植物物种差异显著。理化性质测定分析发现, 高密度与低密度林分的土壤pH、有效磷含量差异显著。相关性分析表明, 土壤pH与林下植被中草本、灌木生物量及总生物量均呈显著正相关关系, 土壤有机质含量与灌木植被生物量及林下植被总生物量呈显著正相关关系, 速效钾含量与灌木植被生物量呈显著正相关关系。土壤微生物群落结构分析可知, 3种密度杉木林地土壤中酸杆菌门、变形菌门、放线菌门和绿弯菌门为优势菌群, 总相对丰度占比超过80%。冗余分析(RDA)表明土壤pH、碱解氮、有效磷和速效钾含量是土壤细菌群落结构变化的关键影响因素。酸杆菌门的优势亚群为Gp2、Gp1、Gp3和Gp6, 占酸杆菌群的51.32%-57.38%, 且随林分密度降低, 林下植被增多, Gp1占比增大, Gp2和Gp6占比下降; Gp6相对丰度与pH呈极显著负相关关系。可见, 杉木纯林经营中适度降低林分密度有利于林下植被生长和良好细菌群落结构保持, 有利于维持杉木林地土壤肥力, 实现可持续经营。  相似文献   

16.
朱臻  沈月琴  吴伟光  徐秀英  曾程 《生态学报》2013,33(8):2577-2585
增加森林碳汇已成为应对气候变化的重要举措.基于浙江和江西两省农户调研数据,以杉木为案例树种,引用生长模型、修正的Faustmann模型碳密度和价格数据,对单一和碳汇木材复合经营目标下的杉木最佳轮伐期和林地期望值进行比较研究,并模拟了不同碳价格和利率水平下的变化,同时绘制了农户的碳汇供给曲线.可以发现,在碳汇林经营模式下,基于目前的杉木市场价格远高于碳价格的现实,农户的经营采伐决策并不会发生明显改变,从而导致在大范围的碳价格变动下碳汇的供给也没有显著增加,这也说明木材收益和碳收益的两个不同经营目标是协调的.同时,基于碳汇经营模式下的杉木林地期望值增长迅速,碳汇林地潜在投资价值巨大,也意味着森林碳汇对于土地利用改变可能会产生巨大影响.  相似文献   

17.
《植物生态学报》2014,38(5):477
人工林目前存在结构单一、土壤退化、生物多样性降低等人类普遍关注的生态问题。马尾松(Pinus massoniana)是长江上游低山丘陵区退耕还林的主要人工林树种。研究采伐林窗对植物物种组成和更新的影响, 对马尾松低效人工林的改造, 提升其生态服务功能具有重要的意义。该文以采伐39年生的马尾松人工林形成的7种不同大小的林窗为研究对象, 分析了不同季节林窗内的植物生活型组成及多样性变化。结果表明: 1)马尾松人工林林下植物以高位芽植物居多, 其次是地面、地下芽植物, 一年生植物较少而缺少地上芽植物。在林窗形成初期, 林窗的高位芽植物比例明显低于林下, 大林窗的高位芽植物比例稍高于小林窗, 地下芽和一年生植物的比例低于小林窗。2)林下的物种丰富度和物种多样性指数显著低于大林窗。不同林窗下植物的丰富度指数、优势度指数、多样性指数也存在显著差异。3)夏季林窗下植物多样性最高, 其次是秋季, 春季多样性最低。1225-1600 m2的大林窗能够促进马尾松人工林植物多样性恢复和植被更新。  相似文献   

18.
《植物生态学报》2014,38(6):540
亚高山森林凋落叶腐殖化是联系植物与土壤碳库和养分库的重要通道, 在冬季可能受到雪被斑块的影响。该文采用凋落物网袋法, 于2012年11月-2013年4月研究了川西亚高山森林不同厚度雪被斑块(厚雪被、中雪被、薄雪被和无雪被)下优势树种岷江冷杉(Abies faxoniana)、方枝柏(Sabina saltuaria)、四川红杉(Larix mastersiana)、红桦(Betula albo-sinensis)、康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)凋落叶在不同雪被关键期(雪被形成期、雪被覆盖期和雪被融化期)的腐殖化特征。结果表明: 亚高山森林冬季不同厚度雪被斑块下6种凋落叶均保持一定程度的腐殖化, 其中红桦凋落叶腐殖化度最大, 达4.45%-5.67%; 岷江冷杉、高山杜鹃、康定柳、四川红杉和方枝柏凋落叶腐殖化度分别为1.91%-2.15%、1.14%-2.03%、1.06%-1.97%、0.01%-1.25%和0.39%-1.21%。凋落叶腐殖质在雪被形成期、融化期和整个冬季累积, 且累积量随雪被厚度减小而增加, 但在雪被覆盖期降解, 且降解量随雪被厚度减小而增大。相关分析结果表明, 亚高山森林凋落叶前期腐殖化主要受凋落叶质量影响, 且与氮和酸不溶性组分呈极显著正相关, 而与碳、磷、水溶性和有机溶性组分呈极显著负相关。表明冬季变暖情景下雪被厚度的减小可能促进亚高山森林凋落叶腐殖化, 但凋落叶腐殖化在不同雪被关键期受雪被斑块和凋落叶质量的调控。  相似文献   

19.
《植物生态学报》2016,40(4):364
Aims
Accurate estimation of carbon density and storage is among the key challenges in evaluating ecosystem carbon sink potentials for reducing atmospheric CO2 concentration. It is also important for developing future conservation strategies and sustainable practices. Our objectives were to estimate the ecosystem carbon density and storage of Picea schrenkiana forests in Tianshan region of Xinjiang, and to analyze the spatial distribution and influencing factors.
Methods
Based on field measurements, the forest resource inventories, and laboratory analyses, we studied the carbon storage, its spatial distribution, and the potential influencing factors in Picea schrenkiana forest of Tianshan. Field surveys of 70 sites, with 800 m2 (28.3 m × 28.3 m) for plot size, was conducted in 2011 for quantifying arbor biomass (leaf, branch, trunk and root), grass and litterfall biomass, soil bulk density, and other laboratory analyses of vegetation carbon content, soil organic carbon content, etc.
Important findings
The carbon content of the leaf, branch, trunk and root of Picea schrenkiana is varied from 46.56% to 52.22%. The vegetation carbon content of arbor and the herbatious/litterfall layer was 49% and 42%, respectively. The forest biomass of Picea schrenkiana was 187.98 Mg·hm-2, with 98.93% found in the arbor layer. The biomass in all layers was in the order of trunk (109.81 Mg·hm-2) > root (39.79 Mg·hm-2) > branch (23.62 Mg·hm-2) > leaf (12.76 Mg·hm-2). From the age-group point of view, the highest and the lowest biomass was found at the mature forest (228.74 Mg·hm-2) and young forest (146.77 Mg·hm-2), respectively. The carbon density and storage were 544.57 Mg·hm-2 and 290.84 Tg C, with vegetation portion of 92.57 Mg·hm-2 and 53.14 Tg C, and soil portion of 452.00 Mg·hm-2 and 237.70 Tg C, respectively. The spatial distribution of carbon density and storage appeared higher in the western areas than those in the eastern regions. In the western Tianshan Mountains (e.g., Ili district), carbon density was the highest, whereas the central Tianshan Mountains (e.g., Manas County, Fukang City, Qitai County) also had high carbon density. In the eastern Tianshan Mountains (e.g., Hami City), it was low. This distribution seemed consistent with the changes in environmental conditions. The primary causes of carbon density difference might be a combined effects of multiple environmental factors such as terrain, precipitation, temperature, and soil.  相似文献   

20.
《植物生态学报》2016,40(4):385
Aims
Monitoring and quantifying the biomass and its distribution in urban trees and forests are crucial to understanding the role of vegetation in an urban environment. In this paper, an estimation method for biomass of urban forests was developed for the Shanghai metropolis, China, based on spatial analysis and a wide variety of data from field inventory and remote sensing.
Methods
An optimal regression model between forest biomass and auxiliary variables was established by stepwise regression analysis. The residual value of regression model was computed for each of the sites sampled and interpolated by Inverse-distance weighting (IDW) to predict residual errors of other sites not subjected to sampling. Forest biomass in the study area was estimated by combining the regression model based on remote sensing image data and residual errors of spatial distribution map. According to the distribution of plantations and management practices, a total of 93 sample plots were established between June 2011 and June 2012 in the Shanghai metropolis. To determine a suitable model, several spectral vegetation indices relating to forest biomass and structure such as normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI), soil-adjusted vegetation index (SAVI), and modified soil-adjusted vegetation index (MSAVI), and new images synthesized through band combinations such as the sum of TM2, TM3 and TM4 (denoted Band 234), and the sum of TM3, TM4 and TM5 (denoted Band 345) were used as alternative auxiliary parameters .
Important findings
The biomass density in urban forests of the Shanghai metropolis varied from 15 to 120 t·hm-2. The higher densities of forest biomass concentrated mostly in the urban areas, e.g. in districts of Jing’an and Huangpu, mostly ranging from 35 to 70 t·hm-2. Suburban localities such as the districts of Jiading and Qingpu had lower biomass densities at around 15 to 50 t·hm-2. The biomass density of Cinnamomum camphora trees across the Shanghai metropolis varied between 20 and 110 t·hm-2. The spatial biomass distribution of urban forests displayed a tendency of higher densities in northeastern areas and lower densities in southwestern areas. The total biomass was 3.57 million tons (Tg) for urban forests and 1.33 Tg for C. camphora trees. The overall forest biomass was also found to be distributed mostly in the suburban areas with a fraction of 93.9%, whereas the urban areas shared a fraction of only 6.1%. In terms of the areas, the suburban and urban forests accounted for 95.44% and 4.56%, respectively, of the total areas in the Shanghai metropolis. Among all the administrative districts, the Chongming county and the new district of Pudong had the highest and the second highest biomass, accounting for 20.1% and 19.18% of the total forest biomass, respectively. In contrast, the Jing’an district accounted for only 0.11% of the total forest biomass. The root-mean-square error (RMSE), mean absolute error (MAE) and mean relative error (MRE) of the model for estimating urban forest biomass in this study were 8.39, 6.86 and 24.22%, respectively, decreasing by 57.69%, 55.43% and 64.00% compared to the original simple regression model and by 62.21%, 58.50%, 65.40% compared to the spatial analysis method. Our results indicated that a more efficient way to estimate urban forest biomass in the Shanghai metropolis might be achieved by combining spatial analysis with regression analysis. In fact, the estimated results based on the proposed model are also more comparable to the up-scaled forest inventory data at a city scale than the results obtained using regression analysis or spatial analysis alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号