首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased resource availability can promote invasion by exotic plants, raising concerns over the potential effects of global increases in the deposition of nitrogen (N). It is poorly understood why increased N favors exotics over natives. Fast growth may be a general trait of good invaders and these species may have exceptional abilities to increase growth rates in response to N deposition. Additionally, invaders commonly displace locals, and thus may have inherently greater competitive abilities. The mean growth response of Centaurea stoebe to two N levels was significantly greater than that of North American (NA) species. Growth responses to N did not vary among C. stoebe populations or NA species. Without supplemental N, NA species were better competitors than C. stoebe, and C. stoebe populations varied in competitive effects. The competitive effects of C. stoebe populations increased with N whereas the competitive effects of NA species decreased, eliminating the overall competitive advantage demonstrated by NA species in soil without N added. These results suggest that simulated N deposition may enhance C. stoebe invasion through increasing its growth and relative competitive advantage, and also indicate the possibility of local adaptation in competitive effects across the introduced range of an invader.  相似文献   

2.
Aims Change in nitrogen (N) availability regulates phosphorus (P) acquisition and potentially alters the competition among native species and invasive weeds. This study determines how current and projected N deposition affect the growth, the intraspecific and interspecific competitive ability of native and invasive plants in calcareous soils with low P availability.  相似文献   

3.
He WM  Li JJ  Peng PH 《PloS one》2012,7(1):e31170
Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.  相似文献   

4.
已有研究表明,土壤氮素增加可提高外来植物的入侵性,降低本地植物的竞争力.为揭示全球氮沉降对入侵种与本地种之间竞争关系的影响,我们于2010年5-8月在中国科学院北京森林生态系统定位研究站温室内,采用取代系列实验方法(standard replacement experiment),研究了3个氮素水平下入侵种豚草(Ambrosia artemisiifolia)与本地种黄花蒿(Artemisia annua)、蒙古蒿(Artemisia mongolica)的生长特征及种内、种间竞争关系的变化.实验采用双因素-随机区组设计,设置了低氮、中氮和高氮3个氮素水平,每一氮素水平分别设置豚草和黄花蒿、豚草和蒙古蒿组成的竞争实验,生长90 d后测量株高和生物量.结果表明:单栽情况下,随氮素水平的增加3个物种的株高均增加,而生物量均无显著变化;混栽情况下,3个物种株高和生物量随氮素水平的增加变化各异,豚草呈极显著增加趋势,而黄花蒿无明显变化,蒙古蒿则先增加后减少.豚草的快速生长使其在竞争中处于优势地位,对本地种黄花蒿和蒙古蒿产生明显的竞争效应.但不同氮素水平下,豚草对本地种的竞争力不同:低氮素水平下,豚草<两个本地种;中氮素水平下,黄花蒿<豚草<蒙古蒿;高氮素水平下,豚草>两个本地种.氮素添加显著提高了豚草的种间竞争力,改变了豚草与本地种之间的竞争关系,使竞争有利于入侵种.据此推测,在全球变化的背景下,氮沉降的增加将会促进外来种豚草的入侵,增加本地群落的可入侵性.  相似文献   

5.
Increased resource availability and feedbacks with soil biota have both been invoked as potential mechanisms of plant invasion. Nitrogen (N) deposition can enhance invasion in some ecosystems, and this could be the result of increased soil N availability as well as shifts in soil biota. In a two-phase, full-factorial greenhouse experiment, we tested effects of N availability and N-impacted soil communities on growth responses of three Mediterranean plant species invasive in California: Bromus diandrus, Centaurea melitensis, and Hirschfeldia incana. In the first phase, plants were grown individually in pots and inoculated with sterile soil, soil from control field plots or soil from high N addition plots, and with or without supplemental N. In the second phase, we grew the same species in soils conditioned in the first phase. We hypothesized growth responses would differ across species due to species-specific relationships with soil biota, but overall increased N availability and N-impacted soil communities would enhance plant growth. In the first phase, Centaurea had the greatest growth response when inoculated with N-impacted soil, while Bromus and Hirschfeldia performed best in low N soil communities. However, in phase two all species exhibited positive growth responses in N-impacted soil communities under high N availability. While species may differ in responses to soil biota and N, growth responses to soils conditioned by conspecifics appear to be most positive in all species under high N availability and/or in soil communities previously impacted by simulated N deposition. Our results suggest N deposition could facilitate invasion due to direct impacts of soil N enrichment on plant growth, as well as through feedbacks with the soil microbial community.  相似文献   

6.
Centaurea stoebe L. subsp. micranthos is native to Eurasia and is invasive in the western portion of the US. Negative impacts of C. stoebe micranthos present in the eastern US have not been recorded. In this study, we examine the effects of C. stoebe micranthos on species diversity on an eastern grassy bald, compare the competitive abilities of plant species from eastern and western grasslands against C. stoebe micranthos, and assess the production of allelopathic compounds in an eastern population of C. stoebe micranthos. Field observations indicated that increasing C. stoebe micranthos abundance was not associated with decreasing abundance or diversity of species. In a greenhouse experiment, C. stoebe micranthos growing with plant species from an eastern grassland were smaller than C. stoebe micranthos growing with species from western grasslands, suggesting that species from the eastern grassland are more competitive against C. stoebe micranthos. We found no evidence that the eastern population of C. stoebe micranthos has allelopathic effects. While the invasion dynamics may change over time, the possibility that C. stoebe micranthos may never become invasive in the studied grassy bald should be weighed when considering control measures here and throughout the eastern US. This study illustrates that invasion dynamics can vary geographically and that land managers need relevant information to gauge an appropriate and economical response.  相似文献   

7.
《植物生态学报》2017,41(4):471
Aims Exotic plant invasions are important components of global change, threatening both the stability and function of invaded ecosystems. Shifts in competitive ability of invasive plants versus their native congeners have been documented. Enhanced UV-B radiation and nitrogen (N) deposition might interact with soil biota communities impacting the invasion process of exotic plant species. To understand the potential effects by UV-B and N with soil biota on plant growth would enhance our understanding of the mechanisms in plant invasions in the context of global change.
Methods We conducted a full-factorial pot experiment in the native range (China) of Triadica sebifera invading US to investigate how UV-B radiation, N and soil biota together determined their seedling growth.
Important findings The results showed that UV-B radiation, N and soil sterilization together impacted the growth of T. sebifera seedlings. UV-B radiation induced changes in biomass allocation with larger leaf biomass observed in response to UV-B radiation. In addition, N increased aboveground biomass and decreased root biomass simultaneously. Soil biota imposed positive effects on growth of T. sebifera, and the addition of N amplified these positive effects. The negative effects by UV-B radiation on growth of T. sebifera showed no response to N addition. Plant height, leaf biomass and total biomass of the invasive T. sebifera populations out- performed those of the native ones. In addition, invasive T. sebifera populations weakened the dependence of root/shoot ratio and root biomass on local soil microorganisms than native populations, but enhanced that of leaf area ratio.  相似文献   

8.
Previous research suggests that atmospheric nitrogen (N) deposition may facilitate the invasion and persistence of exotic plant species in serpentine grasslands, but the relative impact of increased N availability on native and exotic competitive dynamics has yet to be clearly elucidated. In this study, we evaluated how increased N deposition affects plant performance and competitive dynamics of five native grasses and forbs (Plantago erecta, Layia gaillardioides, Lasthenia californica, Vulpia microstachys, and Cryptantha flaccida) and the most common invasive grass in Bay Area serpentine grasslands, Lolium multiflorum. Using a growth chamber system, we exposed Lolium in monoculture, and native species grown both in monoculture and in competition with the exotic Lolium, to all four possible combinations of gaseous nitrogen dioxide (NO2; a dominant atmospheric N pollutant) and soil ammonium nitrate (NH4NO3). In monocultures, gaseous NO2 and soil N addition each increased shoot biomass in Lolium and the natives Layia and Cryptantha. Lolium competitive ability (mean relative yield potential??RYP) increased in response to NO2 addition plus soil N addition against all native competitors. Lolium and most native species did not show differences in photosynthetic rate and stomatal conductance in response to N addition. Our findings indicate that increasing N deposition and subsequent N accumulation in the soil may confer a competitive advantage to the exotic Lolium over native species by stimulating greater biomass accumulation and N allocation to photosynthetic tissue in the invader.  相似文献   

9.
欧洲蕨入侵提高了土壤磷有效性和高磷获取效率 对于欧洲蕨(Pteridium aquilinum)入侵荒地后土壤化学的变化,已经有了相关的研究,但是对于欧洲蕨入侵草地的研究却比较缺乏。本研究探讨了欧洲蕨入侵缺磷草地是否会改变土壤养分资源库,以及与土壤过程和欧洲蕨营养相关的机制。此外,还研究了欧洲蕨入侵前后群落组成对土壤化学差异的反应。在蕨菜生物量高峰期间,我们进行了土壤和植物取样以及植被调查。数据分析包括方差分析(ANOVA)和典型对应分析(CCA)。研究结果表明,欧洲蕨入侵提高了土壤磷有效性、土壤有机碳浓度以及碳氮比、碳硫比和氮硫比,同时降低了铁和钴的浓度。欧洲蕨羽片富含磷,根茎富含钾,而羽片 和根茎的氮磷比很低。典型对应分析(CCA)显示了与磷和钾有效性相关的常见草地植物物种的不同丰度模式。在磷有效性极低的条件下,绒毛草(Holcus lanatus)表现出竞争优势。欧洲蕨通过促进铁和铝的浸出提高了磷有效性。从土壤资源生态位的角度来看,欧洲蕨通过提高自身生长所需的磷有效性并且增加对其他物种的氮限制,从而获得了竞争优势。欧洲蕨提高土壤磷有效性的能力,以及其高磷获取效率背后的生理机制,似乎将欧洲蕨与其他竞争生态策略的物种区分开来,因为其他物种的生长主要局限于营养丰富的环境,因此欧洲蕨更容易入侵缺磷的草地。  相似文献   

10.
Immobilizing nitrogen to control plant invasion   总被引:1,自引:0,他引:1  
Increased soil N availability may often facilitate plant invasions. Therefore, lowering N availability might reduce these invasions and favor desired species. Here, we review the potential efficacy of several commonly proposed management approaches for lowering N availability to control invasion, including soil C addition, burning, grazing, topsoil removal, and biomass removal, as well as a less frequently proposed management approach for lowering N availability, establishment of plant species adapted to low N availability. We conclude that many of these approaches may be promising for lowering N availability by stimulating N immobilization, even though most are generally ineffective for removing N from ecosystems (excepting topsoil removal). C addition and topsoil removal are the most reliable approaches for lowering N availability, and often favor desired species over invasive species, but are too expensive or destructive, respectively, for most management applications. Less intensive approaches, such as establishing low-N plant species, burning, grazing and biomass removal, are less expensive than C addition and may lower N availability if they favor plant species that are adapted to low N availability, produce high C:N tissue, and thus stimulate N immobilization. Regardless of the method used, lowering N availability sufficiently to reduce invasion will be difficult, particularly in sites with high atmospheric N deposition or agricultural runoff. Therefore, where feasible, the disturbances that result in high N availability should be limited in order to reduce invasions by nitrophilic weeds.  相似文献   

11.
Increases in nitrogen (N) availability can favor fast-growing invasive species over slow-growing native species. One way to reduce N availability is to add labile carbon (C) to the soil, which can lead to microbial immobilization of plant available N. This method has been used, with widely varying degrees of success, to both study and control plant invasions. One reason that C addition might not work as expected is that N is not always the limiting resource for plant growth. For example, if plant growth is limited by water, changes in N availability might have little effect on invasion. Here I ask whether effects of C addition on N availability, resident plant biomass, and invasion depend on water availability in semi-arid mixedgrass prairie. Six invasive species were seeded into plots treated with a factorial combination of water (ambient or added) and N (+C, control or +N). Carbon addition reduced capture of mineral N by resin probes (by an average of 73%), and reduced biomass of resident species (from 336 g m−2 to 203 g m−2), both with and without added water. In contrast, because there was little invasion in ambient-water plots, C addition reduced invasion only in added-water plots. Given added water, C addition reduced biomass of Centaurea diffusa by 95%, and prevented invasion by Gypsophila paniculata and Linaria dalmatica. Mechanisms by which C addition reduced invasion varied by species, with added C reducing the growth of individual C. diffusa plants, but reducing numbers of G. paniculata and L. dalmatica individuals.  相似文献   

12.
The Indian mock strawberry [Duchesnea indica (Andrews) Focke] is an invasive plant in several regions of central Europe and Germany. In order to explore its competitive ability, we compared it with the native woodland strawberry (Fragaria vesca L.) by growing it alone as well as in intra- or inter-specific competition in a pot experiment under greenhouse conditions. Nutrient solution was added several times at two nitrogen (N) levels. One addition involved 15N labelling to determine whether the competition of both plant species depends on their ability to acquire N from soil. Duchesnea had a higher biomass production than Fragaria when grown in nutrient-rich soil, both in competition and as a solitary plant. Under N-poor conditions, root interference could change this superiority due to limited soil space. After 65 days of growth, total plant dry weight, total N content and 15N content in the plant tissues were determined. The results show that the predominance of Duchesnea in biomass production was confirmed at high, but not at low N availability. The assimilate partitioning strategy of Duchesnea differs from that of Fragaria: the former generally had a higher shoot-to-root ratio. The N content in shoots and roots was affected only by N addition but not by competition or species. Duchesnea allocated more N to the leaves, Fragaria to the roots. The amount of 15N taken up was nearly equal for both species. In relation to root biomass, Duchesnea had a higher specific uptake rate at low N addition because of the higher root biomass in Fragaria. The roots of Fragaria and Duchesnea did not affect each other when grown together. We conclude that the invasive potential of Duchesnea is only poorly related to the N uptake rate or to better root competition for N. In N-rich environments, however, Duchesnea is highly competitive because of the preferred investment in shoot biomass. Therefore, environments with increased N deposition, i.e. from anthropogenic sources, could promote the invasive potential of Duchesnea.  相似文献   

13.
Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most treatments. Thus, competitive performance arose in most treatments when the two species were grown together. This may be due to the enhanced competitive intensity under interspecific coexistence. However, the values of the relative competition intensity of the leaf functional traits between amaranth and pigweed were all higher than zero under the pH 5.6 simulated acid deposition treatment. Thus, interspecific facilitation occurs when the two species are co-cultivated under the pH 5.6 simulated acid deposition treatment. This may be due the positive nutritional effects induced in the pH 5.6 simulated acid deposition treatment.  相似文献   

14.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

15.
Suding KN  LeJeune KD  Seastedt TR 《Oecologia》2004,141(3):526-535
Changes in competitive interactions under conditions of enhanced resource availability could explain the invasion success of some problematic plant species. For one invader of North American grasslands, Centaurea diffusa (diffuse knapweed), we test three hypotheses: (1) under ambient (high resource) conditions, C. diffusa is better able to tolerate competition from the resident community (competitive response), (2) under ambient conditions, C. diffusa strong impacts the competitive environment (competitive effect), and (3) reductions in nitrogen and/or phosphorus availability diminish these advantages. In support of our first hypothesis, C. diffusa was the most tolerant to neighbor competition of the four focal species under current resource conditions. In opposition to our second hypothesis, however, neighborhoods that contained C. diffusa and those where C. diffusa had been selectively removed did not differ in their impact on the performance of target transplant individuals or on resource conditions. Reduction in resource availability influenced competitive tolerance but not competitive impact, in partial support of our last hypothesis. Reduction in soil nitrogen (via sucrose carbon addition) enhanced the degree of neighbor competition experienced by all species but did not change their relative rankings; C. diffusa remained the best competitor under low nitrogen conditions. Reduction of soil phosphorus (via gypsum addition) weakened the ability of C. diffusa to tolerate neighbor competition proportionately more than the other focal species. Consequently, under low phosphorus conditions, C. diffusa lost its competitive advantage and tolerated neighbor competition similarly to the other focal species. We conclude that C. diffusa invasion may be double-edged: C. diffusa is less limited by nitrogen than the other focal species and is better able to utilize phosphorus to its competitive advantage.  相似文献   

16.
The competitive superiority of invasive plants plays a key role in the process of plant invasions, enabling invasive plants to overcome the resistance of local plant communities. Fast aboveground growth and high densities lead to the competitive superiority of invasive species in the competition for light. However, little is understood of the role belowground root competition may play in invasion. We conducted an experiment to test the effect of root growth on the performance of an invasive shrub Cassia alata, a naturalized, non-invasive shrub Corchorus capsularis, and a native shrub Desmodium reticulatum. We compared seedling growth of the three species and their competitive ability in situ. The roots of the C. alata seedlings grew much faster than those of C. capsularis and D. reticulatum during the entire growth period although C. alata had shorter shoots than D. reticulatum. Furthermore, C. alata showed an apparent competition advantage compared to the other two species as evidenced by less biomass reduction in intraspecific competition and higher competitive effects in interspecific competition. Our study reveals that fast seedling root growth may be important in explaining the competitive advantages of invasive plants. Future studies should pay more attention to the belowground traits of invasive plants, the trade-off between shoot and root growth, and the role of root competition in affecting the population dynamics of invasive plants and the structures of invaded communities.  相似文献   

17.
Plant–soil feedbacks can exacerbate competition between invasive and native species, although the net effect of the interaction between soil biota and competition is likely to be species-specific. Very few studies have addressed the combined effect of soil and competition on plant performance and invasion by exotic woody species. This study explores plant growth and competition between Acacia dealbata and Pinus pinaster in three different soils—native, disturbed and invaded—in Portugal. The invasion of native P. pinaster forests by A. dealbata can be explained by the stronger competition ability of the exotic tree species. Competition is stronger in the native soil, allowing the establishment of A. dealbata in this soil and the displacement of P. pinaster. During invasion, A. dealbata changes soil conditions and establishes positive plant–soil feedbacks that promote its own germination and growth and increase P. pinaster mortality. Soil disturbance by the introduction of a different exotic species, Eucalyptus globulus, did not promote invasion by A. dealbata. We found a significant effect of soil legacy on both growth and competitive ability of the invasive A. dealbata. The ability of A. dealbata to outcompete the native P. pinaster in its own soil and the positive plant–soil feedbacks established after invasion are important mechanisms for A. dealbata invasion.  相似文献   

18.
Abstract

Plant‐microbial interactions under N‐limiting conditions are governed by competitive abilities of plants for N. Our study aimed to examine how two plant species of strawberry, Fragaria vesca L. (native species) and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe), growing in intra‐specific and inter‐specific competition alter the functions of rhizosphere microorganisms in dependence on N availability. By intra‐specific competition at low N level, a 2.4‐fold slower microbial‐specific growth rate was observed under D. indica characterized by smaller root biomass and lower N content in roots compared with F. vesca. By inter‐specific competition of both plants at low N level, microbial growth rates were similar to those for D. indica indicating that plants with stronger competitive abilities for N controls microbial community in the rhizosphere. Since a high N level smoothed the differences between plant species in root and microbial biomass as well as in microbial growth rates under both intra‐specific and inter‐specific competition, we conclude that competitive abilities of plant species were crucial for microbial growth in the rhizosphere only under N imitation.  相似文献   

19.
Huang W  Carrillo J  Ding J  Siemann E 《Oecologia》2012,170(2):373-382
Herbivory can reduce plant fitness, and its effects can be increased by competition. Though numerous studies have examined the joint effects of herbivores and competitors on plant performance, these interactive effects are seldom considered in the context of plant invasions. Here, we examined variation in plant performance within a competitive environment in response to both specialist and generalist herbivores using Chinese tallow as a model species. We combined tallow plants from native and invasive populations to form all possible pairwise combinations, and designated invasive populations as stronger neighbours and native populations as weaker neighbours. We found that when no herbivory was imposed, invasive populations always had higher total biomass than natives, regardless of their neighbours, which is consistent with our assumption of increased competitive ability. Defoliation by either generalist or specialist herbivores suppressed plant growth but the effects of specialists were generally stronger for invasive populations. Invasive populations had their lowest biomass when fed upon by specialists while simultaneously competing with stronger neighbours. The root/shoot ratios of invasive populations were lower than those of native populations under almost all conditions, and invasive plants were taller than native plants overall, especially when herbivores were present, suggesting that invasive populations may adopt an "aboveground first" strategy to cope with herbivory and competition. These results suggest that release from herbivores, especially specialists, improves an invader's performance and helps to increase its competitive ability. Therefore, increasing interspecific competition intensity by planting a stronger neighbour while simultaneously releasing a specialist herbivore may be an especially effective method of managing invasive plants.  相似文献   

20.
Nitrogen is often released in pulses with different frequencies, and N supply pulses may affect growth, reproduction, and biomass allocation of plants. However, few studies have examined how N supply pulses affect intraspecific competition of clonal plants and whether such an effect depends on the N supply amount. We grew one (no competition) or 12 ramets (with intraspecific competition) of both an invasive clonal plant Alternanthera philoxeroides and its native congener Alternanthera sessilis in five different N treatments: control (no N addition), low/high amount with low/high frequencies (pulses). Nitrogen addition significantly increased the growth of both species, while intraspecific competition decreased it. Nitrogen addition significantly increased intraspecific competitive intensity of A. philoxeroides as measured by the log response ratio of growth traits, but did not affect that of A. sessilis. Despite the N supply amount, N pulses had little effect on the growth and thus intraspecific competition of the two species. Therefore, increasing N deposition may change population structure and dynamics and the invasion succession of A. philoxeroides, but changes in N pulses may not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号