首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
研究新型碳青霉烯类抗菌素厄他培南(ertapenem, ERT)与人血清清蛋白(human serum albumin,HSA)的体外相互作用的物理化学特性。模拟生理条件下,计算机模拟技术结合荧光光谱和紫外光谱,研究ERT与HSA相互作用机制,荧光光谱实验中,Kq 值远大于2.0×1010 L·(mol·s)-1,ERT对HSA荧光猝灭的Stern-Volmer 曲线有良好的线性关系,表明ERT与HSA的相互作用表现为静态结合过程。HSA的最大发射波长发生轻微红移,说明HSA的微环境发生了改变。ERT与HSA的分子结合距离r值较小,说明发生能量转移现象。同步荧光技术解析出ERT对HSA的结构域微区构象产生影响,使色氨酸残基周围的微区构象及结合位域的疏水性发生改变。荧光相图技术解析出ERT与HSA相互反应呈线性,说明HSA构象型态的变迁为“二态”模型。HSA与ERT相互作用的热力学参数及分子模拟技术建立ERT-HSA结合模型,表明ERT与HSA的相互作用力主要是疏水作用力,兼有氢键作用力的存在。荧光偏振定量证明,HSA与ERT相互作用过程中生成了非共价复合物。光谱实验与计算机模拟结果基本一致,其结果可为研究ERT与HSA相互作用本质提供一定参考。  相似文献   

2.
光谱和微量热法分析柑橘苷(naringin,NAR)与牛血清白蛋白(bovine serum albumin, BSA)分子间作用,构建NAR与BSA分子间作用的理论模型。采用紫外-荧光光谱法解析Fōrster方程求得NAR与BSA分子间作用及分子间作用的临界距离r,等温滴定微量热技术测定NAR与BSA分子间作用的积分量热曲线,获得Δ H并通过Gibbs-Helmholtz方程获取Δ S和Δ G。基于光谱和微量热辅助分析,构建NAR与BSA分子间作用的理论模型。结果表明,光谱法测出NAR与BSA发生分子间作用,NAR与BSA分子间作用的临界距离为2.06 nm,表明NAR与BSA分子间作用为短程分子间作用。微量热法成功测定出NAR与BSA分子间的热力学参数Δ H<0,Δ S>0,Δ G<0,说明NAR与BSA分子间作用是自发进行的放热相互作用。依据Ross理论分析NAR与BSA分子间作用力主要是疏水作用力和静电作用力。模型构建结果说明,NAR与BSA分子间作用主要发生在BSA的domain IIA区域,NAR与BSA分子间作用力主要是静电作用力,兼有范德华作用力和氢键。实验与理论模型构建结果基本一致。本研究工作可为深入了解蛋白质与大分子化合物间的作用以及研究微观药理学机制提供有益的参考。  相似文献   

3.
芦丁与人血清白蛋白相互作用的紫外可见光谱特性研究   总被引:1,自引:0,他引:1  
本文通过测定芦丁与HSA相互作用前后的紫外可见吸收光谱、圆二色性及人血清白蛋白(HSA)的荧光特性,研究了芦丁与HSA结合作用。结果表明,芦丁在紫外区有三个特征的吸收峰(264.0、285.5及354.5nm)、在330~300 nm及300~230 nm处显示圆二色性,HSA引起芦丁紫外可见吸收光谱波峰红移;芦丁与HSA相互作用后,不引起HSA二级结构的改变,但对其三级结构有影响,同时对HSA荧光激发及发生光谱最大峰位及幅度有影响。  相似文献   

4.
血清蛋白与4,5-二溴荧光素相互作用及其分析应用的研究   总被引:2,自引:0,他引:2  
在 0 .10mol/mL的醋酸溶液中 ,4,5 二溴荧光素能与血清蛋白形成稳定的复合物 ,最大吸收波长 482nm ,与试剂比较 ,红移了 12nm。据此建立了测定血清蛋白的方法 ,用于BSA和HSA的测定 ,分别在 2~ 14mg·L-1有线性关系 ,表观摩尔吸光系数分别为 3.12× 10 5L·mol-1·cm-1和 3.2 7× 10 5L·mol-1·cm-1。应用该法测定了人血清样品总蛋白含量 ,结果令人满意。  相似文献   

5.
对龙须菜(Gracilaria lemaneiformis Greville)及其色素突变体藻胆蛋白吸收光谱进行了比较研究,结果显示不同藻株藻红蛋白的吸收光谱有显的变化,而藻蓝蛋白和别藻蓝蛋白的基本相同。我们克隆了龙须菜及其色素突变体的藻红蛋白亚基的部分基因序列,用该基因序列推导出的氨基酸序列进行分析以揭示这一变化的分子机理,结果显示除几个氨基酸残基的替换外,几株藻间的藻红蛋白的氨基酸序列十分相似,一些氨基酸的替换发生在决定藻红蛋白二级结构及亚基间相互作用的区域,可能会影响藻胆蛋白的构型及相互作用,导致光谱性质的变化。  相似文献   

6.
利用毛细管电泳 (capillary electrophoresis, CE)建立牛血清白蛋白(bovine serum albumin, BSA)-酪胺(tyramine, TA)分子作用机制的分析方法,构建TA-BSA相互作用模型,并研究其相互作用机理. 生理条件下,采用HD法(Hummel-Dreyer, HD),前沿分析法(frontal analysis, FA)和空峰法(vacant peak, VP)研究TA与BSA的结合机制,构建TA-BSA理论模型,获取TA和BSA相互作用参数,分析理论模型的适用度. 通过分子模拟,构建TA与BSA的结合模型,考察TA的BSA结合机制. 结果表明,HD法和VP法均适用于分析TA-BSA体系的相互作用,VP法最优. 模型适用度分析得出双对数方程最适合模拟TA-BSA相互作用,TA与BSA结合强度较弱,且只有单一类型的结合位点. 构建的TA与BSA结合模型表明,TA与BSA的相互作用力主要是氢键和范德华力,兼有疏水作用力. 本文结果可为分析生物胺-蛋白质分子作用机制研究提供有意义的参考.  相似文献   

7.
杨波  益莎  李琴  贺亮  杨光 《生物加工过程》2023,(3):301-307+345
以竹笋加工剩余物笋篼为原料,采用红外光谱(FT-IR)、液质联用技术(HPLC-MS)对笋篼黄酮(BSDF)的主要组分进行鉴定,并利用分子模拟技术研究了笋篼黄酮类物质与人血清白蛋白(HSA)的结合作用。红外结果表明,BSDF具有黄酮苷类化合物的特征峰;液质研究结果表明,BSDF中主要有4种黄酮苷类物质,分别是夏佛塔苷、白杨素-6-C-阿拉伯糖-8-C-葡萄糖苷、芹菜素-6,8-C-二那阿拉伯糖苷、白杨素-6-C-β-D-葡萄糖苷-8-C-α-L-阿拉伯糖苷;分子模拟结果显示,BSDF苷类物质白杨素-6-C-β-D-葡萄糖苷-8-C-α-L-阿拉伯糖苷能够很好地结合HSA的子域ⅠA和ⅢA。两者之间的结合存在氢键作用力、范德华作用力及阳离子-π堆积。该研究为了解笋篼黄酮结构及小分子药物在体内的运输情况提供一定的理论基础。  相似文献   

8.
该文研究了去乙酰化酶抑制剂曲古抑菌素A(trichostatin A,TSA)对慢性髓细胞白血病(chronic myeloid leukemia,CML)细胞株K562及K562/G0l增殖和凋亡的影响及机制.采用不同浓度TSA处理K562及K562/G01细胞,CCK8和克隆形成实验检测细胞增殖能力;流式细胞术、蛋...  相似文献   

9.
从蛋白质可及性分析的角度研究了ERABP与RA的相互作用模式,在原子水平和残基水平上计算了四个与维甲酸结合蛋白(ERABP)有关的分子的可及性,这四个分子是EPA(无配体结晶生成的ERABP),EPB—RA(ERAB和配体雏甲酸RA,并对其进行分析比较。分析结果表明,RA在结合蛋白中采取β-芷香酮环向里,羧基端向外的构象形式;围绕结合部位有24个残基;在结合配体RA时,在结合配体RA时,结合蛋白将发生构象变化,变化的结果是结合部位空穴的暴露程度增大。  相似文献   

10.
通过网络药理学和分子对接技术探究中药黄芩治疗酒精性肝病的作用机制,并通过体外细胞实验验证黄芩有效成分对酒精性肝病的治疗效果。在TCMSP、Swiss ADME和Swiss Target Prediction数据库中检索获得黄芩有效成分及其作用靶点;在GeneCards、OMIM、DisGeNET、TTD和PharmGKB数据库中检索获得酒精性肝病相关的疾病靶点;利用String数据库构建靶点相互作用网络;通过Metascape数据库对关键靶点进行京都基因与基因组百科全书(KEGG)通路富集分析、基因本体(GO)富集分析。采用Cytoscape 3.8.0软件构建黄芩治疗酒精性肝病的“有效成分-靶点-通路”互作网络,并筛选出黄芩有效成分和关键靶点进行分子对接。基于网络药理学和分子对接结果,采用体外细胞实验初步验证预测结果。将黄芩有效成分进行ADME筛选后共获得27个,且这27个有效成分可以通过257个基因靶点对酒精性肝病起到治疗作用,其中关键核心靶点有SRC、AKT1、PIK3R1、STAT3、PIK3CA等。KEGG信号通路富集分析结果显示,黄芩治疗酒精性肝病的主要信号通路包括癌症的途...  相似文献   

11.
Bixin and crocin are natural apocarotenoids utilized as food colorants and additives in food industries worldwide. For safety assessment, it is necessary to understand the biological interaction of food colorants. In our present study, we report the interaction of two apocarotenoids with bovine serum albumin (BSA) at physiological pH using spectroscopic techniques and in silico tools. The binding constant and the mode of binding sites have been studied. The enthalpic and entropic contribution to the intermolecular binding event was analyzed and it was found that the contribution of hydrogen bonding and hydrophobic interactions was dominant. The adverse temperature dependence in the unusual static quenching is found to be a reasonable consequence of the large activation energy requirement in the binding process, which is required to overcome the fundamental block and is a direct result of the unique microstructure of the binding sites. To confirm the experimental analysis, we investigated the binding patterns using different in silico tools. A combination of molecular docking, molecular dynamics, and toxicity analysis was performed, and the obtained results revealed that both the apocarotenoids had high binding affinity with a binding energy of ?5.44 and ?5.93 kcal/mol for bixin and crocin, respectively, with no toxic effects and are in accordance with our experimental analysis. The results directly revealed the flexibility of the protein toward bixin and crocin which has a great impact on the interaction. Thus bixin and crocin can guardedly be used as food colorants in food industries.  相似文献   

12.
The interaction of fisetholz with bovine serum albumin (BSA) and human serum albumin (HSA) was investigated by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. The results revealed that there was a static quenching of BSA/HSA induced by fisetholz. The binding constants (Ka) and binding sites (n) were calculated at different temperatures (293, 303, and 311?K). The enthalpy change (ΔH) were calculated to be –17.20?kJ mol?1 (BSA) and –18.28?kJ mol?1 (HSA) and the entropy change (ΔS) were calculated to be 35.41?J mol?1 (BSA) and 24.02?J mol?1 (HSA), respectively, which indicated that the interaction between fisetholz and BSA/HSA was mainly by electrostatic attraction. Based on displacement experiments using site probes, indomethacin and ibuprofen, the binding site of fisetholz to BSA/HSA was identified as sub-domain IIIA, which was further confirmed by molecular docking method. There was little effect of K+, Ca2+, Cu2+, Zn2+, and Fe3+ on fisetholz-BSA or fisetholz-HSA complex. The spectra of synchronous fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) all showed that fisetholz binding to BSA/HSA leads to secondary structures change of the two serum albumins. According to the Förster non-radiation energy transfer theory, the binding distance between fisetholz and BSA/HSA was 2.94/4.68?nm. The cyclic voltammetry as a supporting tool also indicated that fisetholz interacted with protein.

Communicated by Ramaswamy H. Sarma  相似文献   


13.
A rapid and efficient method for the synthesis of various poly‐substituted benzo[b][1,8]naphthyridines in high yield has been developed via the Friedländer condensation of 2‐aminoquinoline‐3‐carbaldehyde 1 with various alicyclic ketones in a base catalyst (aq. potassium hydroxide). A series of benzo[b][1,8]naphthyridines branched with various side‐chains and substituents were prepared with the aim of being investigated as a fluorescent agents. Electronic absorption and fluorescence properties of some representative benzonaphthyridines (3d, 5b and 21f) in homogeneous organic solvents, dioxane–water binary mixtures and in the microheterogeneous media (sodium dodecyl sulphate (SDS), cetyl trimethyl ammonium bromide (CTAB) and Triton‐X100 micelles) have been examined. A linear correlation between solvent polarity and fluorescence properties was observed. Further, the interaction of these benzonaphthyridines (3d, 5b and 21f) with human serum albumin (HSA) and bovine serum albumin (BSA) in phosphate buffer have been examined by UV‐vis absorption and fluorescence spectroscopy. The fluorescence intensity of 3d, 5b and 21f increases with the increasing HSA and BSA concentration. These benzonaphthyridines also quench the 345 nm fluorescence of BSA in phosphate buffer (λex 280 nm). These compounds have potential for use as neutral and hydrophobic fluorescence probes for examining the microenvironments in proteins, polymers, micelles, etc. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this contribution, the enantioselective interactions between diclofop (DC) and human serum albumin (HSA) were explored by steady‐state and 3D fluorescence, ultraviolet‐visible spectroscopy (UV‐vis), and molecular modeling. The binding constants between R‐DC and HSA were 0.9213 × 105, 0.9118 × 105, and 0.9009 × 105 L · mol‐1 at 293, 303, 313 K, respectively. Moreover, the binding constants of S‐DC for HSA were 1.4766 × 105, 1.2899 × 105, and 1.0882 × 105 L · mol‐1 at 293, 303, and 313 K individually. Such consequences markedly implied the binding between DC enantiomers and HSA were enantioselective with higher affinity for S‐DC. Steady‐state fluorescence study evidenced the formation of DC‐HSA complex and there was a single class of binding site on HSA. The thermodynamic parameters (ΔH, ΔS, ΔG) of the reaction clearly indicated that hydrophobic effects and H‐bonds contribute to the formation of DC‐HSA complex, which was in excellent agreement with molecular simulations. In addition, both site‐competitive replacement and molecular modeling suggested that DC enantiomers were located within the binding pocket of Sudlow's site II. Furthermore, the alterations of HSA secondary structure in the presence of DC enantiomers were verified by UV‐vis absorption and 3D fluorescence spectroscopy. This study can provide important insight into the enantioselective interaction of physiological protein HSA with chiral aryloxyphenoxy propionate herbicides and gives support to the use of HSA for chiral pesticides ecotoxicology and environmental risk assessment. Chirality 25:719–725, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

16.
Human serum albumin (HSA) or anti-human serum albumin (anti-HSA) yields a catalytic hydrogen wave at about -1.85V (vs Ag/AgCl) in 0.25M NH(3).H(2)O-NH(4)Cl (pH 8.58) buffer. When 1.0 x 10(-2)M K(2)S(2)O(8) is present, the catalytic hydrogen wave is further catalyzed, producing a parallel catalytic wave of hydrogen as catalyst in nature, termed the parallel catalytic hydrogen wave. The sensitivity of the parallel catalytic hydrogen wave is higher by two orders of magnitude than that of the catalytic hydrogen wave. Using the parallel catalytic hydrogen wave of anti-HSA or HSA in the presence of K(2)S(2)O(8), two sensitive methods for the determination of anti-HSA were developed. One is a direct determination based on the parallel catalytic hydrogen wave of anti-HAS itself, and the other is a homogeneous immunoassay based on measuring the decrease of the peak current of the parallel catalytic hydrogen wave of HSA after homogeneous immunoreaction of HSA with anti-HSA. In the direct determination, the second-order derivative peak current of the parallel catalytic hydrogen wave of anti-HSA itself is rectilinear to its titer in the range from 1:1.0 x 10(7) to 1:8.4 x 10(6). In the homogeneous immunoassay, the decrease in the second-order derivative peak current of the parallel catalytic hydrogen wave of HSA is linearly related to the added anti-HSA in the titer range from 1:3.0 x 10(7) to 1:6.0 x 10(6). These assays are highly sensitive and rapid in operation and can be used to evaluate such antigens and their antibodies as those that could yield the parallel catalytic hydrogen wave.  相似文献   

17.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

18.
19.
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号