首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
广西主要森林土壤有机碳空间分布及其影响因素   总被引:5,自引:0,他引:5       下载免费PDF全文
为阐明广西森林土壤有机碳密度分布格局及其主要影响因素, 基于森林资源清查资料和345个调查样地的土壤数据, 估算了广西主要森林土壤有机碳储量, 采用地统计学方法描绘了土壤有机碳密度的空间分布, 并利用主成分分析和逐步回归分析方法分析了影响土壤有机碳密度的主要因子。结果表明: 广西主要森林土壤有机碳储量(0-100 cm)达到1686.88 Tg, 土壤有机碳密度为124.70 Mg·hm-2, 低于全国森林土壤平均水平。广西主要森林土壤有机碳密度最佳拟合模型为指数模型, 呈中等强度空间相关, Kriging插值显示土壤碳密度高值区在东北区域, 低值区在西北区域, 表现为喀斯特区域低、非喀斯特区域高的特点。广西主要森林土壤碳密度在不同植被类型和土壤类型下表现出一定差异, 其中竹林>落叶阔叶林>暖性针叶林>常绿落叶阔叶林>常绿阔叶林, 黄壤>红壤>赤红壤>石灰土。主成分分析和逐步回归分析结果发现土层深度、经纬度、海拔是影响广西森林土壤有机碳的主要因子, 其中以土层深度影响最大, 主要受岩溶地貌的影响。  相似文献   

2.
《植物生态学报》2016,40(4):354
Aims
The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China.
Methods
By using the 8th forest resource inventory data and 2011-2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province.
Important findings
The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t·hm-2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t·hm-2, 3.36 t·hm-2, 2.28 t·hm-2 and 90.51 t·hm-2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   

3.
《植物生态学报》2016,40(4):341
Aims
Forests represent the most important component of the terrestrial biological carbon pool and play an important role in the global carbon cycle. The regional scale estimation of carbon budgets of forest ecosystems, however, have high uncertainties because of the different data sources, estimation methods and so on. Our objective was to accurately estimate the carbon storage, density and sequestration rate in forest vegetation in Jilin Province of China, in order to understand the role of the carbon sink and to better manage forest ecosystems.
Methods
Vegetation survey data were used to determine forest distribution, size of area and vegetation types regionally. In our study, 561 plots were investigated to build volume-biomass models; 288 plots of shrubs and herbs were harvested to calculate the biomass of understory vegetation, and samples of trees, shrubs and herbs were collected to analyze carbon content. Carbon storage, density and sequestration rate were estimated by two forest inventory data (2009 and 2014), combined with volume-biomass models, the average biomass of understory vegetation and carbon content of vegetation. Finally, the distribution patterns of carbon pools were presented using ArcGIS soft ware.
Important findings
Understory vegetation biomass overall was less than 3% of the tree layer biomass, varying greatly among different forest types and even among the similar types. The carbon content of trees was between 45.80%-52.97%, and that of the coniferous forests was higher than that of the broadleaf forests. The carbon content of shrub and herb layers was about 39.79%-47.25% and 40%, respectively. Therefore, the vegetation carbon conversion coefficient was 0.47 or 0.48 in Jilin Province, and the conventional use of 0.50 or 0.45 would cause deviation of ±5.26%. The vegetation carbon pool of Jilin Province was at the upper range of regional carbon pool and had higher capacity of carbon sequestration. The value in 2009 and 2014 was 471.29 Tg C and 505.76 Tg C, respectively, and the total increase was 34.47 Tg C with average annual growth of 6.89 Tg C·a-1. The corresponding carbon sequestration rate was 0.92 t·hm-2·a-1. The carbon density rose from 64.58 t·hm-2 in 2009 to 66.68 t·hm-2 in 2014, with an average increase of 2.10 t·hm-2. In addition, the carbon storage of the Quercus mongolica forests and broadleaved mixed forests, accounted for 90.34% of that of all forests. The carbon increment followed the order of young > over-mature > near mature > middle-aged > mature forests. The carbon sequestration rate of followed the order of over-mature > young > near mature > middle-aged > mature forests. Both the carbon increment and the carbon sequestration rate of mature forests were negative. Furthermore, spatially the carbon storage and density were higher in the east than in the west of Jilin province, while the carbon increment was higher in northeast and middle east than in the west. The carbon sequestration rate was higher in Tonghua and Baishan in the south, followed by Jinlin in the middle and Yanbian in the east, while Baicheng and Songyuan, etc. in west showed negative values.  相似文献   

4.
《植物生态学报》2016,40(4):292
Aims
Estimating soil organic carbon (SOC) density and influence factors of tropical virgin forests in Hainan Island provide new insight in basic data for SOC pool estimation and its dynamics study.
Methods
The main distribution areas of tropical virgin forests in Jianfengling (JFL), Bawangling (BWL), Wu- zhishan (WZS), Diaoluoshan (DLS), Yinggeling (YGL) of Hainan Island were selected, and soil samples (0-100 cm) were sampled and analyzed. SOC density was estimated by soil vertical fitting method and soil stratification method to discover the distribution characteristics of soil organic carbon in tropical virgin forests of Hainan Island.
Important findings
Results showed that: (1) The average SOC density using soil vertical fitting method in JFL, BWL, WZS, DLS and YGL was 14.98, 18.46, 16.48, 18.81, 16.66 kg·m-2, respectively, which was significantly higher (p < 0.05) than the estimated average SOC density using soil stratification method in these areas (14.73, 16.24, 15.50, 16.91, 15.03 kg·m-2, respectively). It is better to use soil vertical fitting method for SOC density estimation when the soil was natural without disturbance. (2) The proportion of SOC content in the first 0-30 cm depth interval out of SOC in the whole 0-100 cm soil profiles in JFL, BWL, WZS, DLS and YGL was 50.50%, 48.56%, 43.49%, 47.37%, 42.88%, respectively. (3) SOC density was significantly negative correlated with Shannon-Wiener index, Simpson index, species richness, and soil bulk density; and was significantly positive correlated with altitude, soil porosity, and soil nitrogen. However, SOC density was not significantly correlated to slope, biomass, average diameter at breast height, or average height. (4) Our study area Hainan was located in low latitude area with high rainfall and high temperature, which accelerated the decomposition of organic matter and nutrient recycling, resulting in significantly lower SOC densities in this tropical virgin forests of Hainan Island than the average value in China.  相似文献   

5.
《植物生态学报》2016,40(4):364
Aims
Accurate estimation of carbon density and storage is among the key challenges in evaluating ecosystem carbon sink potentials for reducing atmospheric CO2 concentration. It is also important for developing future conservation strategies and sustainable practices. Our objectives were to estimate the ecosystem carbon density and storage of Picea schrenkiana forests in Tianshan region of Xinjiang, and to analyze the spatial distribution and influencing factors.
Methods
Based on field measurements, the forest resource inventories, and laboratory analyses, we studied the carbon storage, its spatial distribution, and the potential influencing factors in Picea schrenkiana forest of Tianshan. Field surveys of 70 sites, with 800 m2 (28.3 m × 28.3 m) for plot size, was conducted in 2011 for quantifying arbor biomass (leaf, branch, trunk and root), grass and litterfall biomass, soil bulk density, and other laboratory analyses of vegetation carbon content, soil organic carbon content, etc.
Important findings
The carbon content of the leaf, branch, trunk and root of Picea schrenkiana is varied from 46.56% to 52.22%. The vegetation carbon content of arbor and the herbatious/litterfall layer was 49% and 42%, respectively. The forest biomass of Picea schrenkiana was 187.98 Mg·hm-2, with 98.93% found in the arbor layer. The biomass in all layers was in the order of trunk (109.81 Mg·hm-2) > root (39.79 Mg·hm-2) > branch (23.62 Mg·hm-2) > leaf (12.76 Mg·hm-2). From the age-group point of view, the highest and the lowest biomass was found at the mature forest (228.74 Mg·hm-2) and young forest (146.77 Mg·hm-2), respectively. The carbon density and storage were 544.57 Mg·hm-2 and 290.84 Tg C, with vegetation portion of 92.57 Mg·hm-2 and 53.14 Tg C, and soil portion of 452.00 Mg·hm-2 and 237.70 Tg C, respectively. The spatial distribution of carbon density and storage appeared higher in the western areas than those in the eastern regions. In the western Tianshan Mountains (e.g., Ili district), carbon density was the highest, whereas the central Tianshan Mountains (e.g., Manas County, Fukang City, Qitai County) also had high carbon density. In the eastern Tianshan Mountains (e.g., Hami City), it was low. This distribution seemed consistent with the changes in environmental conditions. The primary causes of carbon density difference might be a combined effects of multiple environmental factors such as terrain, precipitation, temperature, and soil.  相似文献   

6.
《植物生态学报》2016,40(4):374
Aims
Our objective was to explore the vegetation carbon storages and their variations in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau that includes Qinghai Province and Xizang Autonomous Region.
Methods
Based on forest resource inventory data and field sampling, this paper studied the carbon storage, its sequestration rate, and the potentials in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau.
Important findings
The vegetation carbon storage in the broad-leaved forest accounted for 310.70 Tg in 2011, with the highest value in the broad-leaved mixed forest and the lowest in Populus forest among the six broad-leaved forests that include Quercus, Betula, Populus, other hard broad-leaved species, other soft broad-leaved species, and the broadleaved mixed forest. The carbon density of the broad-leaved forest was 89.04 Mg·hm-2, with the highest value in other hard broad-leaved species forest and the lowest in other soft broad-leaved species forest. The carbon storage and carbon density in different layers of the forests followed a sequence of overstory layer > understory layer > litter layer > grass layer > dead wood layer, which all increased with forest age. In addition, the carbon storage of broad-leaved forest increased from 304.26 Tg in 2001 to 310.70 Tg in 2011. The mean annual carbon sequestration and its rate were 0.64 Tg·a-1 and 0.19 Mg·hm-2·a-1, respectively. The maximum and minimum of the carbon sequestration rate were respectively found in other soft broad-leaved species forest and other hard broad-leaved species forest, with the highest value in the mature forest and the lowest in the young forest. Moreover, the carbon sequestration potential in the tree layer of broad-leaved forest reached 19.09 Mg·hm-2 in 2011, with the highest value found in Quercus forest and the lowest in Betula forest. The carbon storage increased gradually during three inventory periods, indicating that the broad-leaved forest was well protected to maintain a healthy growth by the forest protection project of Qinghai Province and Xizang Autonomous Region.  相似文献   

7.
《植物生态学报》2015,39(11):1033
Aims Forest trees alter litter inputs, turnover and rhizospheric activities, modify soil physical, chemical and biological properties, and consequently affect soil organic carbon (SOC) storage and carbon sink strength. That how to select appropriate tree species in afforestation, reforestation and management practices is critical to enhancing forest carbon sequestration. The objective of this study was to determine the effects of tree species on SOC density and vertical distributions.Methods A common garden experiment with the same climate, soil, and management history was established in Maoershan Forest Ecosystem Station, Northeast China, in 2004. The experimental design was a completely randomized arrangement with twenty 25 m × 25 m plots, consisting of monocultures of five tree species, including white birch (Betula platyphylla), Manchurian walnut (Juglans mandshurica), Manchurian ash (Fraxinus mandshurica), Dahurian larch (Larix gmelinii), and Mongolian pine (Pinus sylvestris var. mongolica), each with four replicated plots. A decade after the establishment (2013-2014), we measured carbon density and related factors (i.e., bulk density, total nitrogen concentration, microbial biomass carbon, microbial biomass nitrogen, pH value) in soils of the 0-40 cm depth for these monocultures. Important findings Results showed that tree species significantly influenced the SOC density in the 0-40 cm depth (p < 0.05). SOC density in the 0-10 cm depth varied from 2.79 to 3.08 kg·m-2, in the order of walnut > ash> birch > larch > pine, in the 10-20 cm depth from 1.56 to 2.19 kg·m-2, in the order of pine > walnut > ash > birch > larch, in the 20-30 cm depth from 1.17 to 2.10 kg·m-2, and in the 20-40 cm depth from 0.84 to 1.43 kg·m-2. The greatest SOC density occurred in the birch stands in the 20-40 cm depth. The vertical distributions of SOC density varied with tree species. The percentage of SOC in the 0-10 cm depth over the total SOC in the soil profile was significantly higher in the walnut and larch stands than in others, while the percentage of SOC in the 20-40 cm depth over the total SOC was highest in the birch stands. SOC concentration and soil bulk density differed significantly among the stands of different tree species, and were negatively correlated. SOC density was positively correlated with soil microbial biomass and soil pH in the walnut, ash, and larch stands, and with total nitrogen density in all the stands. We conclude that tree species modifies soil properties and microbial activity, thereby influencing SOC density, and that different patterns of vertical distributions of SOC density among monocultures of different tree species may be attributed to varying SOC controls at each soil depth.  相似文献   

8.
《植物生态学报》2016,40(4):327
Aims
Forest carbon storage in Nei Mongol plays a significant role in national terrestrial carbon budget due to its large area in China. Our objectives were to estimate the carbon storage in the forest ecosystems in Nei Mongol and to quantify its spatial pattern.
Methods
Field survey and sampling were conducted at 137 sites that distributed evenly across the forest types in the study region. At each site, the ecosystem carbon density was estimated thorough sampling and measuring different pools of soil (0-100 cm) and vegetation, including biomass of tree, grass, shrub, and litter. Regional carbon storage was calculated with the estimated carbon density for each forest type.
Important findings
Carbon storage of vegetation layer in forests in Nei Mongol was 787.8 Tg C, with the biomass of tree, litter, herbaceous and shrub accounting for 93.5%, 3.0%, 2.7% and 0.8%, respectively. Carbon density of vegetation layer was 40.4 t·hm-2, with 35.6 t·hm-2 in trees, 2.9 t·hm-2 in litter, 1.2 t·hm-2 in herbaceous and 0.6 t·hm-2 in shrubs. In comparison, carbon storage of soil layer in forests in Nei Mongol was 2449.6 Tg C, with 79.8% distributed in the first 30 cm. Carbon density of soil layer was 144.4 t·hm-2. Carbon storage of forest ecosystem in Nei Mongol was 3237.4 Tg C, with vegetation and soil accounting for 24.3% and 75.7%, respectively. Carbon density of forest ecosystems in Nei Mongol was 184.5 t·hm-2. Carbon density of soil layer was positively correlated with that of vegetation layer. Spatially, both carbon storage and carbon density were higher in the eastern area, where the climate is more humid. Forest reserves and artificial afforestations can significantly improve the capacity of regional carbon sink.  相似文献   

9.
《植物生态学报》2016,40(6):533
Aims The optimal patterns of plant community for water use and nutrient utilization, the responses of soil carbon and nitrogen turnover processes to forest succession, and the mechanisms of soil organic carbon accumulation, are three critical issues in forest ecosystem study. It is difficult to accurately detect these ecological processes with conventional methodologies in the short term, yet the application of 13C and 15N natural abundance technique may yield important information about these processes.Methods This study was conducted in Dinghushan Biosphere Reserve. We investigated the natural isotopic abundance of both 13C and 15N of plant-soil continuum along a successional gradient from Pinus massoniana forest (PF) to coniferous and broad-leaved mixed forest (MF), and monsoon evergreen broad-leaved forest (BF). We also analyzed the correlations of foliar stable carbon isotope ratio (δ13C) and stable nitrogen isotope ratio (δ15N) with foliar elemental contents and the variations of soil δ13C and δ15N along soil profiles at different successional stages.Important findings A significant positive correlation between foliar δ13C and foliar C:N was observed. In both litter and soil, the δ13C values tended to decrease along the forest succession, with the order as PF > MF > BF. Foliar δ15N was positively correlated with foliar N content. The δ15N values of litter and upper soil (0-10 cm) increased with successional status. Both soil δ13C and δ15N values increased with increasing soil depth at all three forests. Our results imply that 1) trade-off between water use efficiency and nitrogen use efficiency did not necessarily exist in subtropical forests of China; 2) the application of isotopic technique could assist understanding of the mechanisms of soil carbon accumulation in subtropical forests, especially in old-grow forests; 3) the 15N natural abundance of plant-soil continuum could be a potential indicator of soil nitrogen availability and ecosystem nitrogen saturation status.  相似文献   

10.
《植物生态学报》2016,40(4):395
Aims
This study was conducted to investigate carbon stocks in forest ecosystems of different stand ages in Anhui Province, and to identify the carbon sequestration potential of climax forests controlled by the natural environment conditions.
Methods
Data were collected based on field investigations and simulations were made with the BIOME4 carbon cycle model.
Important findings
Currently, the total forest carbon stocks in Anhui Province amounts to 714.5 Tg C: 402.1 Tg C in vegetation and 312.4 Tg C in soil. Generally, both the total and vegetation carbon density exhibit an increasing trend with the natural growth of forest stands. Soil carbon density increases from young to near mature forests, and then gradually decreases thereafter. Young and middle-aged forests account for 75% of the total forest area in Anhui Province, with potentially an additional 125.4 Tg C to be gained after the young and middle-aged forests reach near mature stage. Results of BIOME4 simulations show that potentially an additional 245.7 Tg C, including 153.7 Tg C in vegetation and 92 Tg C in soil, could be gained if the current forests are transformed into climax forest ecosystems in Anhui Province.  相似文献   

11.
【目的】为了解施秉喀斯特地区林地土壤甲螨的分布和群落组成特点,明确中国西南喀斯特地区林地类型对土壤甲螨群落密度、组成和物种多样性的影响,对该区林地土壤甲螨的群落结构及多样性进行了的调查和分析。【方法】2012年8月选取了中国西南施秉喀斯特地区典型生境中的8个样地,每个样地9个取样点,用Berlese-Tullgren装置分离土样24 h。多样性分析采用常见的多样性指数;群落相似性分析采用Jaccard相似性系数(CJ);群落聚类分析分别采用Marczewski Steinhaus 距离(Cms)和Bray-Curtis距离,应用R 2.11程序进行类平均法聚类。【结果】结果显示,中国西南喀斯特8个样地中土壤甲螨由少数的优势属和数量众多的稀有属组成。其中全菌甲螨属 Perscheloribates (22.48%)和长单翼甲螨属 Protoribates (11.45%)个体数量最为丰富。长单翼甲螨属 Protoribate、上罗甲螨属Epilohmannia、小奥甲螨属 Oppiella、小盾珠甲螨属 Suctobelbella 和盖头甲螨属 Tectocepheus 分布广泛。本区的甲螨组成(属级水平)表现出明显热带和亚热带地区特点。在天然常绿落叶阔叶林中,甲螨的个体数量和种类数较多,但多样性不高,而在人工针叶林中甲螨多样性最高。甲螨群落组成和分布特征多样,异质性高,特别是在天然常绿落叶阔叶林中突出。【结论】研究表明,施秉喀斯特生态系统的不同林分影响甲螨的物种多样性和群落稳定性,天然常绿落叶阔叶混交林是甲螨的“避难所”。  相似文献   

12.
以分布在中国不同气候区的131个成熟天然林土壤为研究对象,测定不同土层(0~10、10~20、20~30、30~50和50~100 cm)土壤有机碳(SOC)密度,分析其与气象因子、土壤性质的关系,研究天然林SOC垂直分布特征及其影响机理。结果表明: 温带针叶林、温带落叶阔叶林、亚热带落叶阔叶林和亚热带常绿阔叶林0~30 cm土层SOC密度均随土壤深度增加而降低。在0~100 cm土层,SOC密度地带性分异明显,温带针叶林SOC密度显著高于温带落叶阔叶林,亚热带常绿阔叶林SOC密度显著高于亚热带落叶阔叶林。SOC密度与土壤黏粒、年降水量以及地上净初级生产力呈显著正相关,与土壤pH和年均温呈显著负相关。年降水量与年均温调节天然林SOC输入与输出,土壤pH与黏粒影响天然林SOC积累,对成熟的天然针叶林与常绿阔叶林进行有效保护,有利于增加我国森林土壤碳库。  相似文献   

13.
《植物生态学报》2016,40(4):318
Aims
Sparse Ulmus pumila forest is an intrazonal vegetation in Onqin Daga Sandy Land, while Populus simonii has been widely planted for windbreak and sand dune stabilization in the same region. Our objective was to compare the differences in carbon (C) density of these two forests and their relationships with stand age.
Methods
We measured the C content of tree organs (leaf, twig, stem, and root), herb layers (above ground vegetation and below ground root) and soil layers (up to 100 cm) in sparse Ulmus pumila forests and Populus simonii plantations of different stand ages, and then computed C density and their proportions in total ecosystem carbon density. In addition, we illustrated the variation in carbon density-stand age relationship for tree layer, soil layer and whole ecosystem. We finally estimated the C sequestration rates for these two forests by the space-for-time substitution approach.
Important findings
The average C contents of tree layer and soil layer for sparse Ulmus pumila forests were lower than those for Populus simonii plantations. The total C density of sparse Ulmus pumila forests was half of that of Populus simonii plantations. The carbon density of soil and tree layers accounted for more than 98% of ecosystem C density in the two forests. Irrespective of forest type, the C density ratios of soil to vegetation decreased with stand age. This ratio was 1.66 for sparse Ulmus pumila forests and 1.87 for Populus simonii plantations when they were over-matured. The C density of tree layer, soil layer, and total ecosystem in both forests increased along forest development. There were significantly positive correlations between tree layer’s C density and stand age in both forests and between the total ecosystem C density of sparse Ulmus pumila forests and stand age. The C sequestration rate of tree layer was 5-fold higher in Populus simonii plantation than in sparse Ulmus pumila forest. The ecosystem-level C sequestration rate was 0.81 Mg C·hm-2·a-1 for sparse Ulmus pumila forest and 5.35 Mg C·hm-2·a-1 for Populus simonii plantation. These findings have implications for C stock estimation of sandy land forest ecosystems and policy-making of ecological restoration and C sink enhancement in the studied area.  相似文献   

14.
《植物生态学报》2017,41(9):953
Aims The bank of soil carbon of forests plays an important role in the global carbon cycle. Our aim is to understand the characteristics of soil carbon storage and its determinants in the forests in Shaanxi Province.Methods The data of forest inventory in 2009 and resampling in 2011 were used to analyze the characteristics of soil carbon storage and its determinants in the forest soil in Shaanxi Province.Important findings The soil carbon storage in the forests in Shaanxi Province was 579.68 Tg. Soil carbon storage of Softwood and Hardwood forests were the highest among all forest types, accounting for 36.35% of the whole province forest soil carbon storage. The forest soil carbon storage was 4.15 times greater in the natural forest (467.17 Tg) than that in the plantations. The young and middle-aged forests were the main contributors to the total carbon storage across all age groups, accounting for about 57.30% of the total forest soil carbon storage. The average soil carbon density of forests in Shaanxi Province was 90.68 t∙hm-2, in which the soil carbon density of Betula forests was the highest (141.74 t∙hm-2). Soil carbon density of different forest types were gradually decreased with soil depth. In addition, it was highest in middle-aged forest. Soil carbon density was higher in the natural forest ecosystems than that in the plantations within the each age group, indicating natural forest ecosystems have higher capacity of carbon sequestration. Differences in the spatial patterns between carbon storage and density indicated that carbon storage was related to forest coverage. The soil carbon density and storage of forests in Yulin were the lowest across the province. This suggests that, in order to enhance the regional carbon sequestration capacity in this region, we need to appropriately strengthen artificial afforestation activities and manage them scientifically and rationally. The soil carbon density of forests in Shaanxi Province decreased with the increase of longitude, latitude, and annual temperature, but increased with the increase of altitude and annual rainfall. This study provides data basis for provincial estimation of forest soil carbon bank in China.  相似文献   

15.
神农架常绿落叶阔叶混交林碳氮磷化学计量比   总被引:2,自引:0,他引:2       下载免费PDF全文
生态化学计量学是研究生态过程中化学元素平衡的科学, 碳(C)、氮(N)、磷(P)化学计量比是生态系统过程及其功能的重要特征。该研究测定了神农架常绿落叶阔叶混交林植物器官、凋落物及土壤的C、N、P含量, 利用生物量加权法计算其化学计量比, 并分析该生态系统不同组分间及不同器官间化学计量比的差异。研究结果发现: 在不同组分之间, C含量、C:N及C:P表现为植物>凋落物>土壤; N、P含量及N:P表现为凋落物>植物>土壤。在不同植物器官间, C含量的差异较小, 其变异系数相对N、P含量较低且保持稳定; N、P含量为叶片最高且变异系数最低; N:P为树皮最高, 而枝的变异系数最低。常绿与落叶树种的叶片N、P含量差异显著。与不同森林类型的化学计量比相比, 该常绿落叶阔叶混交林植物群落的C:P及N:P较低, 凋落物的C:P及N:P较高, 土壤的C、N、P化学计量比与亚热带常绿阔叶林基本一致, 生态系统的C:N相对较低。利用生物量加权法计算得到的该森林生态系统不同组分的C、N、P化学计量比的大小关系与前人利用枝叶取样算术平均的结果存在较大差异。C、N、P含量及其化学计量比在不同器官的分配及内稳性与器官的生理功能关系密切。  相似文献   

16.
广西岩溶植被演替过程中主要小气候因子日变化特征   总被引:13,自引:1,他引:12  
选择广西不同气候带下具有典型性和代表性的岩溶区作为研究区域,调查和监测了岩溶植被演替过程中主要小气候因子的日变化特征。结果表明,在石荒漠阶段和草丛阶段,群落光照强、土温和气温高、空气相对湿度低,时间波动比较明显:灌丛阶段群落冠层以下的照度、气温均较低,随时间变化的幅度不大,而冠层以上的光照强度和气温均出现了大幅上升,而且随时间变化的幅度较大;落叶阔叶林阶段和常绿落叶阔叶混交林阶段群落内部的照度、气温及土壤温度均大幅降低,空气相对湿度保持在较大水平,主要小气候因子的时空变化比较平缓。主要小气候因子的时空动态与群落结构和群落种类组成特征密切相关。  相似文献   

17.
《植物生态学报》2017,41(11):1127
Aims Mountains contain broad environmental gradients, which are to be an outstanding universal value representing significant on-going ecological and biological processes in the evolution and development of zonal vegetation along the elevation gradients. Exploring the biological and ecological value of the vegetation zonation along the elevation gradients of Chinese mountain natural heritage site is important for biodiversity conservation and management.Methods Based on the community survey data of the six vegetation zonation along the elevational gradients in Shennongjia, the global land use dataset, and the literature data of the communities along the altitudinal gradients of other natural heritage sites and the nominated world natural heritage sites in Oriental Deciduous Forest Biogeographic Province by Udvardy, we explored the outstanding universal value of the zonal vegetation along the altitude gradients by the methods of spatial analysis.Important findings Shennongjia heritage site preserves the intact vegetation zonation of the typical Oriental Deciduous Forest Biogeographical Province in the Classification of the Biogeographical Provinces of the World by Udvardy, including evergreen broad-leaved forests (South Slope of the Heritage Site), evergreen deciduous broad-leaved mixed forests, deciduous broad-leaved forests, coniferous and broad-leaved mixed forests, coniferous forests and subalpine shrub and meadow along the elevation gradients. The altitudinal zonation of vegetation in the Shennongjia heritage site represented a variety of bio-ecological processes, such as the turnover of the dominant trees along the altitudinal gradients, and is an outstanding example of the ongoing ecological processes occurring in the development of intact subtropical mixed broadleaved evergreen and deciduous forest in the Northern Hemisphere.  相似文献   

18.
中国主要森林生态系统水文功能的比较研究(英文)   总被引:36,自引:3,他引:33       下载免费PDF全文
 基于中国不同区域生态站的观测资料,着重从降雨截留(林冠截留、枯枝落叶层截持和土壤蓄水)、调节径流和蒸散等3个方面对我国主要森林生态系统的水文生态功能进行了比较研究。各生态系统林冠年截留量在134~626 mm间变动,由大到小排列为:热带山地雨林,亚热带西部山地常绿针叶林,热带半落叶季雨林,温带山地落叶与常绿针叶林,寒温带、温带山地常绿针叶林,亚热带竹林,亚热带、热带东部山地常绿针叶林,寒温带、温带山地落叶针叶林,温带、亚热带落叶阔叶林,亚热带山区常绿阔叶林,亚热带、热带西南山地常绿针叶林,南亚热带常绿阔叶林,亚热带山地常绿阔叶林。枯落物持水量可以达到自身干重的2~5倍,但也因林型而异。土壤非毛管持水量变动在36~142 mm之间,平均89 mm。常绿阔叶林的非毛管持水量通常高于100 mm,而寒温带/温带落叶阔叶林和常绿针叶林通常低于100 mm. 土壤的非毛管持水量通常占生态系统中截持水量的90%,其次是枯落物和林冠层。这说明,森林土壤在调节降雨截留中占有重要地位,其水文功能的大小取决于土壤结构和空隙度,而这些恰恰又受枯落物和森林植被特征的影响。森林皆伐后,一般地表径流会显著地增加,而适当抚育措施则对地表径流影响不大。流域径流受诸多因素的影响,包括植被、土壤、气候、地形、地貌以及人类影响导致的流域景观变化,比较研究表明森林变化对流域径流的影响尚未得到一致的规律性的结果。通过对比研究不同森林的蒸散变化,发现随降雨量的增加,森林蒸散量略有增加,而相对蒸散率却在下降,相对蒸散率在40%~90%间变动。  相似文献   

19.
桂西南喀斯特地区生物多样性丰富、特有种多, 同时也是石漠化问题较为严重的区域。由于该喀斯特地区土层浅薄、岩石裸露、表层储水能力差, 植物在干旱季节经常会受到水分胁迫。植物水力学特征不仅是探讨喀斯特地区植物的生理生态适应性的关键, 还能够为石漠化地区的植被恢复提供重要参考。该研究测定了桂西南喀斯特季雨林17种代表性木本植物(包括不同生活型、叶片习性和生境)的木质部脆弱性曲线、最低水势、叶片膨压丧失点和边材密度等水力性状, 结果发现: (1)喀斯特植物木质部导水率丧失50%时的水势值(P50)的种间差异较大(-0.51- -2.51 MPa), 其中常绿种的抗栓塞能力比落叶种强; (2)喀斯特植物的木质部水力安全边界值(最低水势与P50之间的差值)的均值为0.36 MPa, 说明喀斯特森林植物在自然最低水势状况下木质部发生栓塞的程度较高; 但是不同植物种间存在显著差异, 这可能与喀斯特峰丛洼地生境的复杂性以及物种不同的抗旱策略有关; (3)由于喀斯特植物水分适应机制的多样化, 导致木质部水力安全边界与叶片膨压丧失点、边材密度的相关性并不显著。在区域气候干热化的背景下, 结合喀斯特植物的栓塞脆弱性和长期水势监测(尤其极端干旱事件)分析它们的水力安全, 对预测未来喀斯特森林物种分布和群落动态具有重要的指示作用。  相似文献   

20.
《植物生态学报》2016,40(4):416
Aims
This study aims to evaluate the impacts of future climate change on vegetation and soil carbon accumulation rate in China’s forests.
Methods
The vegetation and soil carbon storage were predicted by the atmosphere-vegetation interaction model (AVIM2) based on B2 climate change scenario during the period of 1981-2040. This study focused on mature forests in China and the forested area maintained constant over the study period. The carbon accumulation rate in year t is defined as the carbon storage of year t minus that of year t-1.
Important findings
Under B2 climate change scenario, mean air temperature in China’s forested area was projected to rise from 7.8 °C in 1981 to 9.0 °C in 2040. The total vegetation carbon storage was then estimated to increase from 8.56 Pg C in 1981 to 9.79 Pg C in 2040, meanwhile total vegetation carbon accumulation rate was estimated to fluctuate between -0.054-0.076 Pg C·a-1, with the average of 0.022 Pg C·a-1. The total soil carbon storage was estimated to increase from 30.2 Pg C in 1981 to 30.72 Pg C in 2040, and total soil carbon accumulation rate was estimated to vary in the range of -0.035-0.072 Pg C·a-1, with the mean of 0.010 Pg C·a-1. The response of vegetation and soil carbon accumulation rate to climate change had significant spatial difference in China although the two time series did not show significant trend over the study period. Our results also showed warming was not in favor of forest carbon accumulation, so in the northeastern and southeastern forested area, especially in the Changbai Mountain, with highest temperature increase in the future, the vegetation and soil carbon accumulation rate were estimated to decrease greatly. However, in the southern of southwestern forested area and other forested area, with relatively less temperature increase, the vegetation and soil carbon accumulation rate was estimated to increase in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号