首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全球气候变暖并不是白天和夜间的平均变暖, 而是呈现一定的不对称性。大豆(Glycine max)是世界范围内种植较广泛的豆科作物, 也是中国重要的粮食作物。研究大豆的生长与水分利用对不对称性气候变暖的响应, 可为预测未来气候变暖情景下大豆的适应提供科学的参考依据。该实验在人工气候箱中采用盆栽方式进行, 设立对照(CON, 昼26 ℃夜16 ℃)、对称性升温(ETs, 昼夜均升高3 ℃)和不对称性升温(ETa, 昼升高2 ℃, 夜升高4 ℃)三个温度情景, 研究了大豆产量和水分利用对昼夜不对称性与对称性升温的差异性响应。结果表明: 在昼/夜26 ℃/16 ℃的背景下, 1) ETs对大豆产量影响不显著, 主要是因为生物量的增加缓解了收获指数下降对大豆的不利影响; ETa使大豆产量减少38.9%, 是由于大豆的收获指数和产量构成要素(荚数、粒数、百粒重)均显著降低。2) ETs对大豆全生育期蒸散量(ET)的影响不显著, ETa使大豆整个生育期ET减少14.8%。3)两种升温模式对大豆耗水量中蒸发量的影响都不显著, 耗水量的差异主要来自蒸腾量的差异, 其中ETs和ETa分别使大豆全生育期蒸腾量降低10.7%和26.1%。综上所述, 只针对ETs进行研究, 而没有对ETa进行研究的实验会低估真正的气候变暖情景(ETa)对大豆生长和产量的不利影响, 高估其对大豆耗水量的影响。  相似文献   

2.
《植物生态学报》2017,41(5):506
Aims Xinjiang is located in the hinterland of the Eurasian arid areas, with grasslands widely distributed. Grasslands in Xinjiang provide significant economic and ecological benefits. However, research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak. This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change.Methods The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons, areas and grassland types in Xinjiang.Important findings The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm, with interannual variations generally consistent with that of precipitation. Overall, the value of ET was lower than that of precipitation. The higher values of ET mainly distributed in the Tianshan Mountains, Altai Mountains, Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains. The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains. Over the period 1979-2012, average annual ET was 183.2 mm in the grasslands of southern Xinjiang, 357.9 mm in the grasslands of the Tianshan Mountains, and 221.3 mm in grasslands of northern Xinjiang. In winter, ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains. Average annual ET ranked among grassland types as: mid-mountain meadow > swamp meadow > typical grassland > desert grassland > alpine meadow > saline meadow. The highest ET value occurred in summer, and the lowest ET value occurred in winter, with ET in spring being slightly higher than that in autumn. The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains. The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains. The average annual WUE in the grasslands of Xinjiang was 0.56 g·kg-1, with the seasonal values of 0.43 g·kg-1 in spring, 0.60 g·kg-1 in summer, and 0.48 g·kg-1 in autumn, respectively. Over the period 1979-2012, the values of WUE displayed significant regional differences: the average values were 0.73 g·kg-1 in northern Xinjiang, 0.26 g·kg-1 in southern Xinjiang, and 0.69 g·kg-1 in Tianshan Mountains. There were also significant differences in WUE among grassland types. The values of WUE ranked in the order of mid-mountain meadow > typical grassland > swamp meadow > saline meadow > alpine meadow > desert grassland.  相似文献   

3.
《植物生态学报》2016,40(12):1219
AimsGlobal warming could have profound effects on ecosystem carbon (C) fluxes in alpine ecosystems. The aim of our study is to examine the effects of gradient warming on net ecosystem carbon exchange (NEE).MethodsIn the Northern Tibetan Grassland Ecosystem Research Station (Nagqu station), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, we conducted various levels of temperature increasing experiments (i.e., 2 °C and 4 °C increments). The warming was achieved using open-top chambers (OTCs). In total, there were three levels of temperature treatments (control, 2 °C and 4 °C increment), and four replicates for each treatment. The ecosystem NEE was monitored every five days during the growing season in 2015.Important findings Our findings highlight the importance of soil moisture in mediating the responses of NEE to climatic warming in alpine meadow ecosystem. The 4 °C warming significantly stimulated NEE,except for July measurements. The 2 °C warming had no effects on NEE during the growing season. Compared to the 2 °C warming, the 4 °C warming significantly stimulated NEE. The results showed that our targeted ecosystem acts as a carbon sink under 2 °C warming, whereas will act as a net carbon source under 4 °C warming in the future. This study provides basic data and theoretical basis for evaluating the alpine ecosystem’s responses to climate change.  相似文献   

4.
《植物生态学报》2016,40(10):1077
Aims Light-use efficiency (LUE) is one of critical parameters in the terrestrial ecosystem production studies. Accurate determination of LUE is very important for LUE models to simulate gross primary productivity (GPP) at regional and global scales. We used eddy covariance technique measurement and tower-based, multi-angular spectro-radiometer observations in autumn 2012 to explore the relationship between bidirectional reflectance distribution function (BRDF) corrected photochemical reflectance index (PRI) and LUE in different phenology and environment conditions in urban green-land ecosystems. Methods Using the eddy covariance technique, we estimated the temporal changes in GPP during the autumn 2012 over Beijing Olympic Forest Park. LUE was calculated as the ratio of GPP to the difference between incoming photosynthetically active radiation (PAR) and PAR reflected from the canopy. Daily PRI values were averaged from the BRDF using semi-empirical kernel driven models. The absolute greenness index (2G_RB) was made by webcam at a constant view zenith and view azimuth angle at solar noon. The logistic function was used to fit the time series of the greenness index. The onset of phonological stages was defined as the point when the curvature reached its maximum value. Important findings Webcamera-observed greenness index (2G_RB) showed a decreasing trend. There was a highly significant relationship between 2G_RB and air temperature (R2 = 0.60, p < 0.001). This demonstrates that air temperature is the main driving factor to determine the phenology. PRI estimated from multi-angle hyper-spectrum can estimate LUE in urban green-land ecosystems in vigorous photosynthetic period. The correlation was the strongest (R2 = 0.70, p < 0.001) in the peak photosynthetic period. PRI relates better to LUE under high temperature (>15 °C) with high vapour pressure deficit (VPD) (>700 Pa) and high PAR (>300 μmol·m-2·s-1). The LUE was up-scaled to landscape/regional scales based on these relationships and phenology. It can also be used for the estimation of GPP of urban green-land with high accuracy.  相似文献   

5.
《植物生态学报》2016,40(10):1049
Aims It is important to study the effects of land use change and reduced precipitation on greenhouse gas fluxes (CO2, CH4 and N2O) of forest soils. Methods The fluxes of CO2, CH4 and N2O and their responses to environmental factors of primary forest soil, secondary forest soil and artificial forest soil under a reduced precipitation regime were explored using the static chamber and gas chromatography methods during the period from January to December in 2014. Important findings Results indicate that CH4 uptake of primary forest soil ((-44.43 ± 8.73) μg C·m-2·h-1) was significantly higher than that of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) and the artificial forest soil ((-10.52 ± 2.11) μg C·m-2·h-1). CH4 uptake of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) was significantly higher than that of the artificial forest ((-10.52 ± 2.11) μg C·m-2·h-1). CO2 emissions of the artificial forest soil ((106.53 ± 19.33) μg C·m-2·h-1) were significantly higher than that of the primary forest soil ((49.50 ± 8.16) μg C·m-2·h-1) and the secondary forest soil ((63.50 ± 5.35) μg C·m-2·h-1) (p < 0.01). N2O emissions of the secondary forest soil ((1.91 ± 1.22) μg N·m-2·h-1) were higher than that of the primary forest soil ((1.40 ± 0.28) μg N·m-2·h-1) and the artificial forest soil ((1.01 ± 0.86) μg N·m-2·h-1). Reduced precipitation (-50%) had a significant inhibitory effect on CH4 uptake of the artificial forest soil, while it enhanced CO2 emissions of the primary forest soil and the secondary forest soil. Reduced precipitation had a significant inhibitory effect on CO2 emissions of the artificial forest soil and N2O emissions of the secondary forest (p < 0.01). Reduced precipitation promotes N2O emissions of the primary forest soil and the artificial forest soil. CH4 uptake of the primary forest and the secondary forest soil increased significantly with the increase of soil temperature under natural and reduced precipitation. CO2 and N2O emission fluxes of the primary forest soil, secondary forest soil and artificial forest soil were positively correlated with soil temperature (p < 0.05). Soil moisture inhibited CH4 uptake of the secondary forest soil and the artificial forest soil (p < 0.05). CO2 emissions of the primary forest soil were significantly positively correlated with soil moisture (p < 0.05). N2O emissions of primary forest soil and secondary forest soil were significantly correlated with the nitrate nitrogen content (p < 0.05). It was implied that reduced precipitation and land use change would have significant effects on greenhouse gas emissions of subtropical forest soils.  相似文献   

6.
《植物生态学报》2017,41(4):439
Aims The extensive use of herbicide to control invasive plants would change the relationship between alien and neighboring plants. In order to provide data for rational use of herbicide and a theoretical reference for further studies on the ecological effects of glyphosate, we explored the variation of the relationship between an invasive plant Solidago canadensis and a native plant Imperata cylindrica when they were sprayed glyphosate.
Methods A replacement series experiment was conducted from June to August 2016 in Wetland Ecosystem Research Station of Hangzhou Bay, State Forestry Administration, to examine the effects of glyphosate at seven concentration levels (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 mL·L-1) on the growth and interspecific competition of S. canadensis and I. cylindrica.
Important findings (1) Glyphosate treatment significantly inhibited the growth of S. canadensis and I. cylindrica (p < 0.05). During the test, cumulative growth of height and leaf number of S. canadensis were apparently reduced with the increase of glyphosate concentration, but the leaf number of S. canadensis treated with 0.3- 1.5 mL·L-1 glyphosate was re-growing with time, while the one treated with 1.8 mL·L-1 was mostly dead. The withering rate of tiller and green leaf of I. cylindrica also significantly increased with the increase of glyphosate concentration, and the growth indices of this plant treated with 0.3-0.6 mL·L-1 were also re-growing with time. (2) Glyphosate treatment significantly affected interspecific competition (p < 0.05), which diminished as the glyphosate concentration increased. (3) Interspecific competition has significant influence on the biomass allocation of S. canadensis (p < 0.05). When facing competition, S. canadensis would allocate more organic matter to root and thus increase the ratio of root to shoot. Competition only inhibited the tiller number and total biomass of I. cylindrica, but insignificantly affected its ratio of root to shoot. (4) The interaction between glyphosate treatment and S. canadensis-I. cylindrica interspecific relationship also significantly influenced the biomass of S. canadensis and I. cylindrica (p < 0.05), but insignificantly affected the root/shoot ratio of two plants. Different plants have different tolerance to glyphosate stress. Compared with native plant I. cylindrica, S. canadensis has stronger tolerance to glyphosate. Low-concentration glyphosate could decrease the competitive intensity between S. canadensis and I. cylindrica, which may disturb the structure and dynamics of plant communities.  相似文献   

7.
《植物生态学报》2017,41(7):761
Aims The correlation between vein density and water use efficiency (WUE) affects the balance between water supply and demand of plant leaves, which is significant for comprehending the ecological adaptation strategies of plants. The objective of this study was to study how Salix matsudana modulated vein density and WUE along a soil moisture gradient in Zhangye Wetland, China. Methods The study was conducted in floodplain wetland near Heihe River in Zhangye City, Gansu Province, China. Three sample plots, at a spatial interval of 70 m, were set up along a soil moisture gradient ordinally from the area near the water body to the wetland edge, plot I (69.23%), spot II (48.38%) and spot III (35.27%). Community traits were investigated by using diagonal method, and all individuals of S. matsudana were used for measurements of height and canopy. At each plot, 5 individuals of S. matsudana at 4 vertices and diagonal intersection were selected for measurements of vein density, WUE, net photosynthetic rate (Pn), transpiration rate (Tr), photosynthetically active radiation (PAR), saturated vapor pressure differences (VPD), specific leaf area, stomatal conductance (Gs) and intercellular CO2 concentration (Ci). We used mathematical methods of correlation analysis and standardized major axis to investigate relationships between vein density and WUE. Important findings With decreasing soil moisture, the height, canopy, specific leaf area, Gs and Ci of S. matsudana decreased gradually, while the vein density, WUE, Pn, Tr, PAR and VPD increased gradually. The correlation between vein density and WUE was positive in all the three plots, but the relationship varied along the soil moisture plots gradient. There was a highly significant positive correlation (p < 0.01) between the vein density and WUE at plot I and III, whereas the correlation only reached a significant level (p < 0.05) at plot II; The correlation coefficient between vein density and WUE is significantly smaller than 1 at plot I (p < 0.05), while the correlation coefficient is significant greater than 1 at plot II and III (p < 0.05). We can conclude that varied relationships between vein density and WUE of S. matsudana along a soil moisture gradient could reflect plant acclimation.  相似文献   

8.
Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed‐top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration.  相似文献   

9.
《植物生态学报》2017,41(1):136
Aims Carbon (C), nitrogen (N) and phosphorus (P) play important roles in plant growth and physiological functions. We aimed at exploring the intrinsic relationships of C, N and P in Myrica nana—a common shrub in Yunnan Province—as well as their relationships with pant biomass and soil nutrients.
Methods We measured the concentration of C, N and P of M. nana from 29 sites for their magnitudes and correlations with soil nutrients.
Important findings 1) The arithmetic mean value of C, N and P concentration in the roots, stems and leaves of M. nana was 45.94%, 0.54%, 0.03%, and 46.32%, 0.58%, 0.03%, and 49.05%, 1.70%, 0.06%, respectively. C, N and P concentrations in the leaves were significantly higher than those in the roots and the stems. The C:N:P in roots, stems and leaves was 1531:18:1, 1544:19:1, and 818:10:1, respectively. 2) The C concentration and N:P in leaves of M. nana decreased with the increase of biomass of M. nana; the leaf C concentration was significantly correlated with biomass (p < 0.01), while the correlation between N:P and biomass was not significant (p > 0.05). The leaf N increased with the increase of plant biomass, the P was significantly correlated with biomass (p < 0.05), but the correlation between N concentration and biomass was not significant (p > 0.05). N:P in leaves was 34.2, suggesting that plant growth was limited by P. 3) C, N and P concentration in the roots were significantly correlated with soil P (p < 0.05), with N, P concentrations correlated with soil P positively (p < 0.01) and C negatively (p < 0.05). C concentration in the stems was significantly and negatively correlated with soil C, N, with significant correlation with C, N, and P concentration (p < 0.01). P concentration in the stems was significantly and positively correlated with soil P concentration (p < 0.01), while leaf P significantly and positively correlated with soil C, N and P (p < 0.01); leaf C concentration was significantly and negatively correlated with soil P (p < 0.01).  相似文献   

10.
《植物生态学报》2016,40(8):788
Aims Trade-offs between leaf size and vein density are the basis of the theory of leaf economics spectrum, and are to understand the relationship between the physical build and physiological metabolism of plant leaves under different degrees of competition for resources. Our objective was to study the changes in the relationship between leaf size and vein density (leaf dry biomass and leaf area) in Achnatherum splendens populations with four plant bundle densities located in the flood plain wetland of Zhangye. Methods The study site was located at floodplain wetlands of Zhangye, Gansu Province, China. Survey and sampling were carried out in the communities that A. splendens dominated. According to the plant bundle density, the A. splendens communities were divided into four density gradients with “bundle” for the sampling units, high density (I, > 12 bundle·m-2), medium density (II, 8-12 bundle·m-2), medium density (III, 4-8 bundle·m-2) and Low density (IV, <4 bundle·m-2). According to the density of each combination, we chose seven (5 m × 5 m) A. splendens samples, resulting in a total of 28 samples (4 × 7). The soil physical and chemical properties of four density gradients were investigated and six samples of A. splendens were used to measure the leaf area, leaf dry biomass and vein density in laboratory, and biomass of different organs was measured after being dried at 85 °C in an oven. 28 plots were categorized into three groups: high, medium and low density, and the standardized major axis (SMA) estimation method was used to examine the allometric relationships between leaf area, leaf dry biomass and vein density. Important findings The results showed that with the population density changed from high, medium, to low, the soil moisture decreased, and soil electric conductivityincreased. The leaf area, leaf biomass and height of A. splendens decreased, and the vein density, specific leaf area and photosynthetically active radiation (PAR) increased gradually. In addition, leaf net photosynthetic rate (Pn), transpiration rate (Tr) and twig number firstly increased then decreased. There was a highly significantly negative correlation (p < 0.01) between the leaf size and vein density on the high- and low-level densities (I, IV), whereas less significant (p < 0.05) on the level of medium density (II, III). The SMA slope of regression equation in the scaling relationships between leaf size and vein density was significantly smaller than -1 (p < 0.05).  相似文献   

11.
《植物生态学报》2017,41(6):661
Aims Plants can enhance their photosynthetic efficiency and competitiveness by adjusting canopy structure and radiation interception. The objective of this paper was to quantify the relationship between canopy structure (crown depth and crown area) and light interception (LI) in a Salix matsudana stand under three different stand densities in a flood plain of Zhangye.Methods Our study site is located at the Heihe flood plain of Xichengyi in Ganzhou district, Zhangye City, Gansu Province in the middle Heihe River, where S. matsudana is the dominant species. Based on stand density (10 m × 10 m), the S. matsudana community is divided into three types: low density (I, 25-36 Ind.·plot-1), medium density (II, 37-48 Ind.·plot-1), and high density (III, 49-60 Ind.·plot-1). Community characteristics, soil physical and chemical properties of each type were measured. At each plot, we measured photosynthetically active radiation (PAR), LI, net photosynthetic rate (Pn), transpiration rate (Tr), crown depth, crown area, leaf area index (LAI), twig numbers, twig length, and bifurcation angle. The standardized major axis (SMA) estimation method was used to determine the relationships between LI and canopy structure.Important findings With increasing in stand density, we found that soil moisture increased, and soil electric conductivity decreased, while twig length and crown depth increased, and PAR, twig numbers, bifurcation angle and crown area decreased. LAI and LI, Pn and Tr reached their maximum at the stand of medium density. There was a significant, positive correlation and negative correlation (p < 0.01), respectively, between the LI, crown depth and crown area at low density (I), whereas low significant (p < 0.05) at high density (III), and high significantly positive correlation (p < 0.01) at the medium density (II). S. matsudana has more horizontal branches that reduce LI. Canopy thickness and increased crown area at low density. More vertical distribution of branches at high density, and a more balanced spacial distribution were found at medium density.  相似文献   

12.
《植物生态学报》2016,40(10):1003
Aims Grazing activities degrade soil aggregates, reduce vegetation coverage and affect the amount of deposited material, and make the land more vulnerable to wind erosion. Although livestock increase was considered as the main issue leading to the degradation, only very few studies have quantitatively investigated the relationship between grazing and soil erosion. The relationship between different stocking rates and sediment flux, and sediment soil particle was studied to reveal the mechanism of different grazing intensities on soil erosion process, to provide basic parameters for grazing optimization in the Stipa breviflora desert steppe. Methods In the Stipa breviflora desert steppe research area, BSNE collecting sand boxes were set in the randomly distributed paddock experiment sites for 11 year with different grazing intensities (0.15、0.30、0.45、0 sheep·hm-2·month-1, corresponding to light grazing LG, moderate grazing MG, heavy grazing HG and control CK, respectively). The quantitative relationship between grazing intensity and sediment flux, and the characteristics of sediment soil particle were conducted in four sampling periods through 2 years (April 2013 to April 2015).Important findings (1) Grazing intensity had a significant effect on the sediment flux (p< 0.05), and the sediment flux increased with the increase of grazing intensity. The response of sediment flux to grazing intensity was variable with season. The daily average sediment flux (13.12 g·m-1·d-1) during the period of April to October was smaller than that from October to April (18.74 g·m-1·d-1). The sediment flux difference of different grazing intensities was greater from April to October, with the 5 times daily average sand flux in the heavy grazing paddock that in the control. The average sediment flux difference of different grazing intensities was small from October to April. (2) The relationship between the natural logarithm of sediment flux at different height and the vertical height had a better binomial fitting from April to October, and there was no obvious regular pattern about flux vertical distribution from October to April, and the vertical flux difference of grazing intensities was mainly expressed in 0-50 cm layer. (3) Sand sediment particle ≤250 μm accounted for more than 85% of the total sediment, the sand sediment particle of ≤50 μm) size was significantly enriched, and the enrichment ratio increased with the increase of vertical height. The enrichment ratio of 125-250 μm particle and 50-125 μm particle decreased with the increase of vertical height, and the enrichment ratio of 125-250 μm particle was smaller than that of 50-125 μm particle (p< 0.05). Therefore grazing intensity had different influence on the sand flux in Stipa breviflora desert steppe, the greater the grazing intensity, the heavier the wind erosion was, and the effect of grazing intensity on grassland was enhanced by wind erosion.  相似文献   

13.
《植物生态学报》2017,41(3):301
Aims Soil respiration of the lands covered by biocrusts is an important component in the carbon cycle of arid, semi-arid and dry-subhumid ecosystems (drylands hereafter), and one of the key processes in the carbon cycle of drylands. However, the responses of the rate of soil respiration with biocrusts to water and temperature are uncertain in the investigations of the effects of experimental warming and precipitation patterns on CO2 fluxes in biocrust dominated ecosystems. The objectives of this study were to investigate the relationships of carbon release from the biocrust-soil systems with water and temperature in drylands. Methods Intact soil columns with two types of biocrusts, including moss and algae-lichen crusts, were collected in a natural vegetation area in the southeastern fringe of the Tengger Desert. Open top chambers were used to simulate climate warming, and the soil respiration rate was measured under warming and non-warming treatments using an automated soil respiration system (LI-8150). Important findings Over the whole observational period (from April 2016 to July 2016), soil respiration rates varied from -0.16 to 4.69 μmol·m-2·s-1 for the moss crust-covered soils and from -0.21 to 5.72 μmol·m-2·s-1 for the algae-lichen crust-covered soils, respectively, under different rainfall events (the precipitations between 0.3-30.0 mm). The mean soil respiration rate of the moss crust-covered soils is 1.09 μmol·m-2·s-1, which is higher than that of the algae-lichen crust-covered soils of 0.94 μmol·m-2·s-1. The soil respiration rate of the two types of biocrust-covered soils showed different dynamics and spatial heterogeneities with rainfall events, and were positively correlated with precipitation. The mean soil respiration rate of the biocrust-covered soils without warming was 1.24 μmol·m-2·s-1, significantly higher than that with warming treatments of 0.79 μmol·m-2·s-1 (p < 0.05). By increasing the evaporation of soil moisture, the simulated warming impeded soil respiration. In most cases, soil temperature and soil respiration rate displayed a similar single-peak curve during the diel cycle. Our results show an approximately two hours’ lag between soil temperature at 5 cm depth and the soil respiration rate of the biocrust-covered soils during the diel cycle.  相似文献   

14.
《植物生态学报》2017,41(6):670
Aims Anthropogenic pollutants cause an increase in ground-level ozone concentration, which is a known threat to plant growth and yield and has been extensively observed worldwide. Since ozone is only slightly soluble in water, it is deposited mainly through dry deposition in terrestrial ecosystem. The object of this study was to analyze the characteristics of ozone dry deposition and to estimate the contribution of stomatal and non-stomatal ozone deposition pathways to total ozone deposition in a winter wheat field.Methods The research site was a winter wheat (Triticum aestivum) field located in Yongfeng experimental station of Nanjing University of Information Science & Technology. The data used in this study were collected from March 16, 2016 to May 30, 2016. We observed ozone dry deposition with an eddy-covariance system. This system mainly included a 3D sonic anemometer, an open-path infrared absorption spectrometer, a fast-response ozone chemiluminescent analyzer and a slow-response ozone monitor. We simultaneously measured meteorological data including solar radiation (SR), air temperature (T), air relativity humidity (RH), wind speed, net radiation, and rainfall. All raw data were recorded with data-logger and averaged every 30 min.Important findings Half hourly means of ozone concentrations (CO3), ozone flux (FO3) and ozone dry deposition velocity (Vd) in the winter wheat field were 32.9 nL·L-1, -5.09 nmol·m-2·s-1, 0.39 cm·s-1, and the ranges of them were 16-58 nL·L-1, -2.9- -11.7 nmol·m-2·s-1, 0.17-0.63 cm·s-1, respectively. FO3 and CO3/Vd were found to be mismatched with phase peaks occurring at different time intervals. The ecosystem was more effective on ozone dry deposition, under conditions of moderate to high SR (SR ≥ 400 W·m-2), moderate T and humility (T = 18 °C and RH > 40%). The relationship between Vdmax and SR was this function (y = 1.06 -exp (-0.0094 - x)). Vdmax increased with SR When SR < 400 W·m-2, and Vdmax reached its maximum when SR =400 W·m-2. Vdmax maintained its maximum when SR ≥ 400 W·m-2. The relationship between Vdmax and T was “bell” curve (y = 1.06 - (x - 18)2/169). Vdmax reached its maximum when T = 18 °C. Vdmax decreased with RH when RH < 40 % (y = 0.030x - 0.106). The variation of Vd might uncertainty when RH was high. There was a liner positive relationship between friction velocity (u*) and Vd, but this relationship was not significant. The mean day-to-day and daytime contributions of stomatal and non-stomatal ozone deposition pathway to total ozone deposition were 32%, 68% and 42%, 58%, respectively, during the whole experimental period.  相似文献   

15.
《植物生态学报》2017,41(2):186
Aims There have been a large number of studies on the independent separate responses of fine roots to warming and nitrogen deposition, but with contradictory reporting. Fine root production plays a critical role in ecosystem carbon, nutrient and water cycling, yet how it responds to the interactive warming and nitrogen addition is not well understood. In the present study, we aimed to examine the interactive effects of soil warming and nitrogen addition on fine root growth of 1-year-old Chinese fir (Cunninghamia lanceolata) seedlings in subtropical China.
Methods A mesocosm experiment, with a factorial design of soil warming (ambient, +5 °C) and nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1, ambient + 80 kg·hm-2·a-1), was carried out in the Chenda State-owned Forest Farm in Sanming City, Fujian Province, China. Fine root production (indexed by the number of fine roots emerged per tube of one year) was measured biweekly using minirhizotrons from March of 2014 to February of 2015.
Important findings (1) The two-way ANOVA showed that soil warming had a significant effect on fine root production, while nitrogen addition and soil warming × nitrogen addition had no effect. (2) The three-way ANOVA (soil warming, nitrogen addition and diameter class) showed that soil warming, diameter class and soil warming × diameter class had significant effects on fine root production, especially for the number of fine roots in 0-1 mm diameter class that had been significantly increased by soil warming. Compared with the 1-2 mm roots, the 0-1 mm roots seemed more flexible. (3) Repeated measures of ANOVA (soil warming, nitrogen addition and season) showed that soil warming, season, soil warming × season, and soil warming × nitrogen addition × season had significant effects on fine root production. In spring, the number of fine roots was significantly increased both by soil warming and soil warming × season, while soil warming, nitrogen addition, soil warming × nitrogen addition significantly decreased fine root production in the summer. (4) Soil warming, soil layer, soil warming × soil layer had significant effects on fine root production. The number of in-growth fine roots was significantly increased by soil warming at the 20-30 cm depth only. It seemed that warming forced fine roots to grow deeper in the soil. In conclusion, soil warming significantly increased fine root production, but they had different responses and were dependent of different diameter classes, seasons and soil layers. Nitrogen addition had no effect on fine root production. Only in spring and summer, soil warming and nitrogen addition had significant interactive effects.  相似文献   

16.
《植物生态学报》2017,41(4):450
Aims Stoichiometric homeostasis is an important mechanism in maintaining ecosystem structure, function, and stability. The invasion of exotic species, Spartina alterniflora, has largely threatened the structure and function of native ecosystems in the Minjiang River estuarine wetland. However, how S. alterniflora invasion affect plant stoichiometric homeostasis is largely unknown. This could enhance our understanding on wetland ecosystem stability and expand the applications of ecological stoichiometry theory.
Methods Nitrogen (N) and phosphorus (P) contents of plant organs and soils in the S. alterniflora, Cyperus malaccensis var. brevifolius, and S. alterniflora-C. malaccensis var. brevifolius mixture were measured, and the homeostatic index (H) was calculated according to the stoichiometric homeostasis theory.
Important findings Our results showed that the invasion of S. alterniflora significantly increased soil N:P ratio (p < 0.05), but did not affect soil N or P contents. The N and P contents of leaf and stem were the highest for S. alterniflora, and those of the stem were the highest for C. malaccensis var. brevifolius. At the ecosystem level, the average of homeostatic index (H) of N (HN, 25.31) was larger than those of P (HP, 10.33) and N:P (HN:P, 2.50). At the organ level, root HN was significantly larger than stem HN (p < 0.05) and sheath HN:P was greater than root HN:P (p < 0.05), while there was no significant difference for HP among root, stem, leaf, and sheath (p > 0.05). As for species, root HN of S. alterniflora was significantly larger than that of C. malaccensis var. brevifolius in the mixture community (p < 0.05). In the monoculture, stem HN:P of S. alterniflora was significantly higher than that of C. malaccensis var. brevifolius (p < 0.05). Furthermore, root HN, leaf HN and sheath HN of S. alterniflora in the mixed community was significantly larger than that of S. alterniflora in the monoculture (p < 0.05), suggesting that S. alterniflora invasions increased their stoichiometric homeostasis. Meanwhile, the stoichiometric homeostasis of invasive and native plants were influenced by multiple factors, such as nutrients, organs, vegetation, and invasion. However, larger homeostasis was found in S. alterniflora than in C. malaccensis var. brevifolius in some particular organs either in mixture or monoculture communities. Therefore, the successful invasion of S. alterniflora may result from higher homeostatic index than the native species, C. malaccensis var. brevifolius.  相似文献   

17.
《植物生态学报》2015,39(12):1176
Aim In the loess hilly region, drought stress frequently occurs during the late spring and early summer as a result of insufficient water supply and asynchronous changes between temperature and precipitation. Our objective was to quantify the characteristics of water-consumption through transpirations and their responses to precipitation in the dominant plantations in this region. Methods Thermal dissipation probe (TDP) was used to measure the sap flow density (Fd) of Robinia pseudoacacia and Platycladus orientalis from April through October in 2009 in Ansai National Ecological Experimental Station. Environmental variables, including meteorological factors and soil water content, were simultaneously measured. Important findings The diurnal variation of Fd exhibited a single-peak curve during the growing season of R. pseudoacacia and P. orientalis. The maximum Fd was three times greater in R. pseudoacacia (0.12068 m3·m-2·h-1) than that in P. orientalis (0.03737 m3·m-2·h-1). Except in the rapid-growth season (July to August), the Fd of these two species during the post-precipitation period were significantly higher than that during the pre-precipitation period. The Fd of P. orientalis and R. pseudoacacia was well fitted with transpiration (VT), an integrated index calculated from both vapor pressure deficit (VPD) and solar radiation (Rs), using an exponential saturation function. Generally, Fd increased in response to rising VT, while these values tended to be stable when VT reached about 50 kPa (W·m-2)1/2. Furthermore, R. pseudoacacia showed more sensitive to precipitation (p < 0.001) than P. orientalis, according to different hydraulic conductance model coefficients (fitting parameter b) between pre- and post-precipitation periods. Therefore, R. pseudoacacia could be considered as a precipitation-sensitive species, while P. orientalisasa precipitation-insensitive species. Through analyzing the different responses of plantation species to precipitation in the loess hilly region, this study provides a scientific basis for the local plantation management from the aspect of tree water use during ecological restoration.  相似文献   

18.
Aims As the second largest C flux between the atmosphere and terrestrial ecosystems, soil respiration plays a vital role in regulating atmosphere CO2 concentration. Therefore, understanding the response of soil respiration to the increasing nitrogen deposition is urgently needed for prediction of future climate change. However, it is still unclear how nitrogen deposition influences soil respiration of shrubland in subtropical China. Our objectives were to explore the effects of different levels of nitrogen fertilization on soil respiration, root biomass increment, and litter biomass, and to analyze the relationships between soil respiration and soil temperature and moisture.
Methods From January 2013 to September 2014, we conducted a short-term simulated nitrogen deposition experiment in the Rhododendron simsii shrubland of Dawei Mountain, located in Hunan Province, southern China. Four levels of nitrogen addition treatments (each level with three replicates) were established: control (CK, no nitrogen addition), low nitrogen addition (LN, 2 g·m-2·a-1), medium nitrogen addition (MN, 5 g·m-2·a-1) and high nitrogen addition (HN, 10 g·m-2·a-1). Soil respiration was measured by LI-8100 soil CO2 efflux system. At the same time, we measured root biomass increment and litter biomass in each plot.
Important findings Soil respiration exhibited a strong seasonal pattern, with the highest rates found in summer and the lowest rates in winter. Annual accumulative soil respiration rate in the CK, LN, MN and HN was (2.37 ± 0.39), (2.79 ± 0.42), (2.26 ± 0.38) and (2.30 ± 0.36) kg CO2·m-2, respectively. Annual mean soil respiration rate in the CK, LN, MN and HN was (1.71 ± 0.28), (2.01 ± 0.30), (1.63 ± 0.27) and (1.66 ± 0.26) μmol CO2·m-2·s-1, respectively, and it was 17.25% higher in the LN treatment compared with CK (p = 0.06). The root biomass increment was increased by LN, MN, and HN treatments by 18.36%, 36.49% and 61.63%, respectively, compared to CK. The litter biomass was increased by LN, MN, and HN treatments by 35.87%, 22.17% and 15.35%, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature (p < 0.01, R2 is 0.77 to 0.82) and a significant linear relationship with soil moisture at the depth of 5 cm (p < 0.05, R2 is 0.10 to 0.15). The temperature sensitivity (Q10) value of CK, LN, MN and HN plots was 3.96, 3.60, 3.71 and 3.51, respectively. These results suggested that nitrogen addition promoted plant growth and decreased the temperature sensitivity of soil respiration. The increase of root biomass under N addition may be an important reason for the change of soil respiration in the study area.  相似文献   

19.
全球气候变暖将对陆地生态系统(尤其是高寒草甸生态系统)碳循环产生深远影响。该研究依托中国科学院地理科学与资源研究所藏北高原草地生态系统研究站(那曲站), 设置不同增温幅度实验, 模拟未来2 ℃增温和4 ℃增温的情景, 探究不同增温幅度对青藏高原高寒草甸净生态系统碳交换(NEE)的影响。研究结果显示: 1)在2015年生长季(6-9月), 不增温和2 ℃增温处理下NEE小于0, 总体表现为碳汇, 而4 ℃增温处理下NEE大于0, 总体表现为碳源; 2)在生长季的6月、8月及整个生长季, 与不增温相比, 4 ℃增温处理显著提高了NEE, 而2 ℃增温处理没有显著改变NEE; 7月, 2 ℃和4 ℃增温处理均显著提高了NEE; 3)在半干旱的高寒草甸生态系统, 土壤水分是决定NEE的关键因素, 增温通过降低土壤水分而导致高寒草甸生态系统碳汇能力下降。该研究可为青藏高原高寒草甸生态系统应对未来气候变化提供基础数据和理论依据。  相似文献   

20.
《植物生态学报》2017,41(1):126
Aims Little is known about the stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in plateau shrubs across China. Sibiraea angustata is a typical and representative shrub species on the eastern Qinghai- Xizang Plateau, and exploring its C, N and P distribution patterns and stoichiometric properties in different organs (including root, shoot, leaf, twig and fruit) would help us better understand the mechanisms of C, N and P cycling and balance in the S. angustata dominated shrub ecosystem.
Methods Sixteen sampling sites were selected on the eastern Qinghai-Xizang Plateau by the stratified sampling method. The height and coverage of the dominant shrubs, latitude, longitude and altitude of the sites were recorded. Three 5 m × 5 m plots were selected at each site. At least 128 biological samples of plant organs of S. angustata were collected and measured, respectively. The C and N concentrations of plant samples were analyzed using an elemental analyzer (2400 II CHNS). The P concentration was analyzed using the molydate/ascorbic acid method after H2SO4-H2O2 digestion.
Important findings The C, N and P concentrations of different organs followed the order of: shoot (495.07 g·kg-1) > twig (483.37 g·kg-1) > fruit (480.35 g·kg-1) > root (468.47 g·kg-1) > leaf (466.33 g·kg-1); leaf (22.27 g·kg-1) > fruit (19.74 g·kg-1) > twig (7.98 g·kg-1) > shoot (4.54 g·kg-1) > root (4.00 g·kg-1) and fruit (2.85 g·kg-1) > leaf (1.92 g·kg-1) > twig (0.96 g·kg-1) > root (0.52 g·kg-1) > shoot (0.45 g·kg-1), respectively. The ranges of the coefficient of variation (CV) for C, N and P concentrations were 1.71%-4.44%, 14.49%-25.50% and 11.46%-46.15%, respectively. Specifically, the C concentration was relatively high and stable, and the maximum CV values for N and P were found in roots. The N:P value of different organs varied from 7.12-12.41 and the minimum CV for N:P was found in twig, which indicated that N:P in twig had higher internal stability. In addition, correlation analysis indicated that the C concentration was significantly negatively correlated with N and P concentrations and correlation coefficients were -0.407 and -0.342, respectively. However, N concentration had dramatically positive correlation with P concentration and the correlation coefficient was 0.814. These results also could indicate that the C, N and P stoichiometric characteristics in the S. angustata shrub accorded with the homeostatic mechanism and growth rate hypothesis to some extent, the distributions of C, N and P concentrations were closely related to the function of the organs and it should be prudent to use ecological stoichiometric ratios to judge the condition of nutrient limitation at the species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号