首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
张瑜  金光泽 《植物生态学报》2016,40(12):1276-1288
倒木是森林生态系统的重要组成部分, 在地力维护、生物多样性保持以及碳(C)和养分循环等方面具有重要意义, 但倒木物理化学性质随其腐烂等级和径级而变化。为了深入理解腐烂等级和径级对倒木物理化学性质的影响, 该研究以典型阔叶红松林的建群种——红松(Pinus koraiensis)的倒木为研究对象, 将其每个腐烂等级(I-V)下的倒木分为4个径级(径级i ≤ 10.0 cm、径级ii 10.1-30.0 cm、径级iii 30.1-50.0 cm、径级iv >50.0 cm), 研究了不同腐烂等级、径级及两者交互作用对倒木心材和边材物理化学性质的影响。结果表明: 心材和边材具有相似的变化规律。倒木心材和边材含水率随着腐烂等级增加而增加, 而木材密度随腐烂等级和径级的增加均呈下降趋势; 边材C含量以及心材和边材的氮(N)、磷(P)含量随腐烂等级增加呈上升趋势, 心材N、P含量随径级增加呈先增加后减少的趋势; 纤维素含量随腐烂等级增加呈下降趋势, 而木质素含量呈上升趋势, 纤维素和木质素含量随径级增加没有明显变化规律。倒木含水率与C、N、P、木质素含量(除心材P含量)显著正相关, 与纤维素含量显著负相关; 木材密度与C、N、P、木质素含量显著负相关, 与纤维素含量显著正相关。由此可见, 倒木物理化学性质受不同腐烂等级和径级的影响有各自的变化规律, 且倒木的物理性质(含水率和木材密度)是影响化学含量变化的重要因素。  相似文献   

2.
倒木是高寒森林生态系统重要的碳(C)库和养分库,其不同分解阶段的质量变化,是认识倒木分解过程中C和养分释放的重要基础。以一个分解序列的岷江冷杉(Abies faxoniana)倒木为研究对象,研究了心材、边材和树皮在5个分解阶段的C:N:P化学计量特征,以及木质素和纤维素含量动态。结果显示:I至III分解阶段,随着分解程度加深,树皮C含量升高,而心材和边材C含量降低,从IV分解阶段开始倒木各组分C含量均开始显著降低。除III分解阶段的心材外,倒木各组分N含量总体表现为随着分解程度加深而增加的趋势,除边材N含量在V分解阶段时显著升高外,其余组分均未达到显著性水平。心材和树皮P含量表现为先降后升的变化趋势,最小值分别出现在III和II分解阶段;边材P含量表现为随着分解程度加深而增加。在同一分解阶段,树皮相对于边材和心材均具有最低的C:N:P化学计量比,易分解比例Fm也表明树皮更易于分解。边材在I和II分解阶段的C:N:P化学计量比最高,心材在III到V分解阶段C:N:P化学计量比最高。心材C:P、树皮和边材的C:N和C:P临界值与N和P的初始值成反比。纤维素含量随着倒木分解而降低,不同分解阶段的纤维素含量表现为:心材>边材>树皮;但木质素含量随着分解程度加深而增加,表现为:树皮>边材>心材;倒木3个组分纤维素含量下降均快于木质素,此外,IV和V分解阶段的树皮木质素与纤维素比值显著增高,且一直处于较高水平。统计分析结果表明:倒木N含量显著影响不同分解阶段木质素和纤维素分解。由生态化学计量学理论推测:树皮分解前期易受N限制,整个分解阶段均易受P限制,心材和边材在整个分解阶段均易受N和P限制。  相似文献   

3.
Decomposition of oak Quercus spp. logs (25 35 cm diameter, 3 m long) was compared among log substrates in Oregon, Minnesota. Kansas and North Carolina during the first five years on the ground. Decomposition of whole logs (weighted by substrate) averaged 0.069 yr-1 (±0.16 SD). but followed a 2-exponential model (k = 0.12 yr-1 year 1 and k = 0.06 yr -1 years 2 5), reflecting qualitative differences among log substrates (outer and inner bark, sapwood and heartwood). Rapid loss from bark substrates contributed to the initial rapid decay rate. Sapwood decay rate averaged 0.15 yr-1 and dominated the second log decay rate. Heartwood lost only 6% mass during the first five years, for an overall decay rate of 0.012 yr-1 that likely will represent a longer-term third exponential decay rate.
Carbon loss amounted to ca 5 kg yr-1 per 170 kg log. Nutrient concentrations generally declined during the first five years, but nitrogen, sulfur, and sodium accumulated in sapwood and heartwood during this period. Sulfur content increased in all substrates and doubled in whole logs during this 5-yr period. Complex patterns of nutrient content suggest patterns of microbial colonization and nutrient utilization. Polynomial models were developed to describe rates of carbon and nutrient flux in log substrates.  相似文献   

4.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

5.
The susceptibility of Scots pine (Pinus sylvestris L.) sap- and heartwood against the wood decaying brown-rot fungus (Coniophora puteana) was investigated after long-term forest fertilization at three different sites in central Finland. Different wood properties: wood extractives, wood chemistry, and wood anatomy were used to explain sap- and heartwood decay. Scots pine sapwood was more susceptible to decay than its heartwood. In one site, sapwood seemed to be more resistant to wood decay after forest fertilization whereas the susceptibility of heartwood increased. Significant changes in the sapwood chemistry were found between treatment and sites, however, no relationship between wood chemistry and wood decay was observed in the factor analysis. The results of this study show that there was an inconsistent relationship between decay susceptibility and fertilization and the measured physical and chemical attributes of the wood were not consistently correlated with the decay rate.  相似文献   

6.
《植物生态学报》1958,44(8):842
倒木是森林生态系统维持健康和更新的重要组成部分, 在倒木不同腐解阶段, 倒木上定植的苔藓植物组合的差异尚不清楚。为深入探讨倒木上苔藓植物组合变化规律及其影响因素, 该文对西藏色季拉山同一地点不同腐解程度的4株华山松(Pinus armandii)倒木上的苔藓植物进行了样方调查和数据分析。结果表明: 4株倒木上40个样方共有苔藓植物22科52种, 其中藓类13科38种, 苔类9科14种; 以恒有优势种为特征进行划分, 共得到14个物种组合。随着倒木腐解程度加大以及周围环境的不断改变, 生长其上的苔藓植物物种多样性逐渐增加, 但组合数量和苔藓总盖度却呈现先增大后减小的趋势。苔藓物种由耐旱性强的丛生型藓类, 如木灵藓科、白发藓科, 逐渐演替为喜阴湿环境、快速生长的垫状或毯状藓类, 如提灯藓科、羽藓科和青藓科。倒木苔藓植物组合空间结构复杂程度逐渐增大。倒木是多种苔藓植物选择的重要生长基质, 其上苔藓植物受倒木的腐解程度、水分和光照等条件的影响而发生相应的物种组合变化。  相似文献   

7.
丰林自然保护区阔叶红松林粗木质残体研究   总被引:1,自引:0,他引:1  
粗木质残体(CWD)是森林生态系统的重要组成部分,对维持森林生态系统健康具有不可忽视的贡献.采用典型取样法在黑龙江丰林国家级自然保护区设置了17块20×20m的标准样地,拟对保护区内阔叶红松林中粗木质残体的贮量、形态组成、直径、长度及腐烂度等特征进行研究.研究结果表明:(1)CWD总贮量为75.1m3·hm-2,其中倒木,枯立木和树桩的贮量分别为.24 m3·hm-2,2.03m3·hm-2和7.34m3 ·hm-2.(2)倒木和枯立木的优势径级范围分别为11cm~20cm(占CWD总数的4%)和0-10cm(45%);倒木和枯立木的优势长度范围分别为0-5m (%)和m-10m(49%).(3)CWD腐烂度呈近正态分布,且主要分布在Ⅱ(28%),Ⅲ(35%)和Ⅳ(2%)腐烂等级上.  相似文献   

8.
木质残体是森林生态系统的重要组成部分,其理化性质影响木质残体的分解.本研究以集中分布于天宝岩国家级自然保护区的长苞铁杉(Tsuga longibracteata)林木质残体为对象,将4个不同类型林分的木质残体划分为5个腐烂等级和4个径级,研究林分类型、腐烂等级、径级及其交互作用对木质残体理化性质的影响.结果 表明:从物...  相似文献   

9.
木腐真菌是微生物的一个重要类群, 主要以倒木为生长基质, 通过产生各种水解酶将倒木的纤维素、木质素和半纤维素分解为小分子物质, 对促进森林生态系统中的营养物质循环发挥着重要的生态功能。于2016年8月在浙江古田山国家级自然保护区开展的木腐真菌野外调查, 利用形态学和DNA序列分析对采集的标本进行了物种鉴定, 并分析了木腐真菌的物种组成和地理成分。在采集的158份标本中鉴定木腐真菌45属92种, 其中白腐真菌78种, 褐腐真菌14种。古田山的木腐真菌物种区系组成中, 热带-亚热带成分比例最高。在158份木腐真菌标本中, 97份标本采自直径大于10 cm的倒木或树桩上, 分属于76个种, 是木腐真菌生长的主要基质大小类型; 48份标本采自直径为2-10 cm的枝干上, 分属38个种; 13份标本采自直径小于2 cm的枝干上, 分属12种。不同腐烂等级倒木上生长的真菌数量和种类差异明显, 其中一级腐烂倒木上采集到9份标本(7种), 二级腐烂倒木上采集到86份标本(45种), 三级腐烂倒木上49份标本(29种), 四级腐烂倒木上14份标本(14种)。结果表明, 林分中倒木直径大小和腐烂程度是影响木腐真菌生长与分布的重要因子。  相似文献   

10.
Wood decay activity and coupled cellulase production were examined for freshwater lignicolous Ascomycetes, Deuteromycetes and an Oomycete. Wood decay ability was assessed by weight changes in wood and bark blocks of ash and cottonwood colonized by test fungi. Changes in wood components were also measured. Production of coupled cellulases was determined by measurement of activity of culture filtrates. Except for early successional species, most fungi caused weight loss in sapwood blocks; all species caused weight loss in bark blocks. Bark blocks were decayed more rapidly than sapwood blocks and cottonwood blocks were decayed more rapidly than those of ash. For four species examined, cellulose and lignin disappeared simultaneously, with cellulose disappearing more rapidly than lignin. All species produced extracellular exoglucanase, endoglucanase and glucosidase when grown in liquid media containing crystalline cellulose. Enzyme production by most of the species was increased by the addition of glucose.  相似文献   

11.
In Norway spruce, a fungistatic reaction zone with a high pH and enrichment of phenolics is formed in the sapwood facing heartwood colonized by the white-rot fungus Heterobasidion parviporum. Fungal penetration of the reaction zone eventually results in expansion of this xylem defense. To obtain information about mechanisms operating upon heartwood and reaction zone colonization by the pathogen, hyphal growth and wood degradation were investigated using real-time PCR, microscopy, and comparative wood density analysis of naturally colonized trees with extensive stem decay. The hyphae associated with delignified wood at stump level were devoid of any extracellular matrix, whereas incipient decay at the top of decay columns was characterized by a carbohydrate-rich hyphal sheath attaching hyphae to tracheid walls. The amount of pathogen DNA peaked in aniline wood, a narrow darkened tissue at the colony border apparently representing a compromised region of the reaction zone. Vigorous production of pathogen conidiophores occurred in this region. Colonization of aniline wood was characterized by hyphal growth within polyphenolic lumen deposits in tracheids and rays, and the hyphae were fully encased in a carbohydrate-rich extracellular matrix. Together, these data indicate that the interaction of the fungus with the reaction zone involves a local concentration of fungal biomass that forms an efficient translocation channel for nutrients. Finally, the enhanced production of the hyphal sheath may be instrumental in lateral expansion of the decay column beyond the reaction zone boundary.To grow to great heights, trees continually replace their water- and nutrient-conducting elements. Older elements, such as the heartwood that is formed in many trees, gradually become nonconductive. In contrast to the living sapwood, heartwood lacks active defense mechanisms against microbes. However, lignin, the polymer coating cell wall polysaccharides, is highly resistant to microbial degradation. In fact, white-rot fungi, besides having evolved the ability to tolerate or detoxify the secondary metabolites accumulating in heartwood, are the only organisms capable of efficiently degrading lignin. Following establishment in the heartwood of living trees, the colonies of pathogenic white-rot fungi expand and eventually also threaten the conductive sapwood.The white-rot fungus Heterobasidion annosum sensu lato, composed of three species with overlapping geographic distributions and host ranges in Europe (23), is the most important pathogen of Norway spruce (Picea abies L. Karst) in boreal forests. Primary infection of Norway spruce stands by H. annosum sensu lato takes place through fresh thinning stumps or wounds on roots and at the base of the stem. Basidiospores landing on these entrance points give rise to mycelia which colonize the root systems, and eventually the fungus spreads into the stem heartwood. At sites infested with Heterobasidion parviporum, a species primarily restricted to Norway spruce, roots of saplings can become infected by the fungus after around 10 years of growth (25). Stem colonization usually initiates only after the heartwood has started to develop, which in Norway spruce takes place in trees 25 to 40 years old (17). Due to relatively rapid axial spread within heartwood, the decay column caused by H. annosum sensu lato often is up to 10 m high in the stems of mature Norway spruce trees.In response to sapwood challenge by an expanding heartwood-based colony of H. annosum sensu lato, Norway spruce forms a so-called reaction zone (RZ) in the border area between healthy sapwood and colonized heartwood. This xylem defense is characterized by high pH due to increased carbonate content and enrichment of phenolic compounds, particularly lignans, some of which have shown antifungal properties in bioassays (14, 30, 31). Although several wood decay fungi are able to eventually penetrate the RZ regions formed in trees, the strategies employed by fungi to breach these unique defense barriers are poorly understood (24). The purpose of this study was to obtain information about the mechanisms operating in heartwood colonization and expansion of the decay column via penetration of the RZ. To do this, we examined spatial growth of H. parviporum and the associated substrate exploitation patterns within naturally colonized mature stems of Norway spruce.  相似文献   

12.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

13.
We studied the mesostigmatid mite community in four classes of wood decay in mixed (pine-oak) forest stands in the Wielkopolska region, Cental-West Poland. A total of 80 samples, including bark, phloem and rotten wood of coniferous and deciduous species logs, were taken in August 2006 and 2007. Decay classes were a qualitative, categorical index based on visual assessment of decomposition in coarse woody debris. A total of 3621 mesostigmatid mites were counted and identified to 91 species. In general the total number of species was diverse in the decay classes and ranged from 35 (classes I and II) to 58 (class IV). The average number of species did not differ significantly among wood decay classes. Also the abundance of mesostigmatids did not differ significantly among wood decay classes, but the highest abundance was observed in the last class (IV). Cluster analysis of the species identity index showed that the microhabitats were divided into two main clusters: relatively undecayed wood and decayed wood. Species accumulation curves showed that relatively decayed wood (class IV) had a greater rate of species accumulation than undecayed wood from the class I decomposition.  相似文献   

14.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

15.
Decaying logs are important seedbeds in boreal and subalpine forests. However, biotic and abiotic factors and their interactions related to seedling colonization patterns on logs remain unclear. In the present study, we evaluated the influence of bryophyte communities, wood decay type (white-, brown-, and soft-rot) owing to decomposer fungal activities, and environmental abiotic factors on seedling establishment in an old-growth subalpine coniferous forest in Japan. Among the tree species recorded on the conifer logs, Picea jezoensis var. hondoensis was the most dominant. Log surfaces were covered with distinctive patches of liverwort Scapania bolanderi and moss Pleurozium schreberi (approximately 33% cover for each). Redundancy analysis showed that brown-rot in sapwood significantly affects the bryophyte and seedling community on the logs. Generalized linear models suggested that the total bryophyte cover, Scapania cover, and white-rot in heartwood positively associate with Picea seedling density, whereas Pleurozium cover and basal area of adjacent Picea adults negatively associate with Picea seedling density. Results of structural equation modeling suggested that the brown-rot of sapwood positively associates with Scapania cover that has a positive effect on Picea seedling density. Furthermore, brown-rot of sapwood inhibited the Pleurozium cover, thus contributing to the Scapania dominance on the logs. These results suggest that fungal wood decomposer activities affect colonization of Picea seedlings in an indirect way via structuring bryophyte community on the logs.  相似文献   

16.
Heartwood and sapwood development was studied in 18-year-old Eucalyptus globulus trees from pulpwood plantations with different spacings (3 × 2, 3 × 3, 4 × 3, 4 × 4 and 4 × 5 m), on cross-sectional discs taken at breast height. The trees possessed a large proportion of heartwood, on average 60% of the wood cross-sectional surface. Spacing was a statistically significant source of variation of heartwood area, which ranged between 99 and 206 cm2 for the closer (3 × 2) and wider (4 × 5) spacings, respectively. There was a positive and high statistical significant correlation between heartwood diameter and tree diameter (heartwood diameter = −0.272 + 0.616 dbh; r 2 = 0.77; P < 0.001), and larger trees contained more heartwood regardless of spacing. Heartwood proportion in cross-section remained practically constant between spacings but increased with tree diameter class: 55.1, 62.2, 65.0 and 69.5% for diameter at breast height classes <15, 15–20, 20–25 and >25 cm, respectively. The sapwood width did not depend on tree diameter growth and remained practically constant at an average of 18 mm (range 15–21 mm), but sapwood area showed a good linear regression with tree diameter. Therefore, tree growth enhancement factors, such as wide spacings, will induce formation of larger heartwoods that can negatively impact raw-material quality for pulping. The increase in heartwood in relation with tree dimensions should therefore be taken into account when designing forest management guidelines.  相似文献   

17.
 Radial distribution of soluble phenolics was investigated at different heights in stems of Juglans nigra, J. regia and hybrids J. nigra 23 × J. regia. Four major phenolic compounds were studied: hydrojuglone glucoside (HJG), quercitrin (QUER) and two unknown compounds characterized as two ellagic acid derivatives E1 and E2. HJG and E1 content increased gradually in the sapwood, peaked in the sapwood-heartwood transition zone, and decreased drastically in the heartwood. QUER was accumulated preferentially around the transition zone, and its content was relatively low in the outer part of the sapwood and in the inner part of the heartwood. E2 content was low in the sapwood and increased in the heartwood. The heartwood formation was marked by the accumulation of new soluble compounds. The relationship between wood extractives and wood colour were evaluated and discussed. HJG was considered to be a major precursor of heartwood colour providing chromophores through hydrolysis (deglucosylation), oxidation and polymerization processes. Received: 2 September 1997 / Accepted: 23 November 1997  相似文献   

18.
Hicks  William T.  Harmon  Mark E. 《Plant and Soil》2002,243(1):67-79
O2 is an important regulator of physiological processes involved in the decomposition of woody debris, yet O2 levels and diffusion rates within decomposing logs are largely unknown. We examined how O2 diffusion rates in decayed and sound wood varied with moisture and density, and we compared predicted with observed seasonal changes in oxygen concentration in logs in a Pacific Northwest old-growth Pseudotsuga menziesii forest. In the laboratory, the oxygen diffusion coefficient (DO2) was determined in the longitudinal and radial (or tangential) directions on wood cores of varying moisture content and density. In the field, O2 was measured in tubes inserted to three radial depths (2, 6 and 15 cm) within logs of two species (Pseudotsuga menziesii and Tsuga heterophylla) and five decay classes (where class 5 = most decayed). In both the radial and longitudinal directions, DO2 increased exponentially as the air filled pore space (AFPS) increased and as density decreased. In the field, mean O2 concentrations in logs were not significantly different between species. Mean O2 concentrations were significantly lower in the least decayed logs as compared to the most decayed logs. Mean O2 concentrations decreased with radial depth only in decay class two logs. Seasonal O2 levels did not consistently vary with log moisture, respiration, or air temperature. The comparison of the results from a model that assumes oxygen diffuses only in the radial direction to field data indicates that laboratory measurements of oxygen diffusion may underestimate field oxygen concentrations. Cracks, insect galleries and other passages in decayed logs, and longitudinal oxygen diffusion may account for this discrepancy. In the field, log oxygen concentrations were rarely as low as 2%, indicating anaerobic conditions may not be as common in logs as we previously thought. Oxygen limitations on decomposition may occur in relatively sound and/or water soaked wood, but probably not in decayed logs in a terrestrial setting.  相似文献   

19.
The gelatinous layer (G-layer) of tension-wood fibres in reaction wood of beech showed alterations as a result of the physiological processes involved in the conversion of sapwood into false heartwood or reaction-zone tissue. Using transmitted-light, fluorescence and UV microscopy, polyphenolic compounds were found to infiltrate and encrust the cellulose microfibrils within the G-layer. Experiments with naturally infected and artificially inoculated wood showed that these processes affect the rate and mode of degradation by wood-decaying fungi. Thus, although the ascomycete Ustulina deusta was able to degrade the G-layer from within the lumina of tension-wood fibres in unaltered sapwood, it failed to do so for a prolonged period within false heartwood and reaction zones. In both situations, however, there was some degradation of the underlying secondary wall in the form of erosion troughs which can be attributed to soft rot 'type II', and internal cavity formation typical for 'type I' attack. The present study indicates that not only cell type, but also alterations in the cell wall structure, affect the activity and degradation mode of decay fungi in beech.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号