首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1 The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations.
  • 2 The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. The use of gamma radiation to induce sterility, however, negatively affects both somatic cells as well as reproductive cells. Consequently, mating performance of sterilized individuals decreases drastically over time. The mating propensity of sterilized Euscepes postfasciatus (Fairmaire) males irradiated with a single dose of 150 Gy (the current standard of the Okinawa Prefecture SIT programme) is equal to that of non‐irradiated weevils for the first 6 days.
  • 3 Fractionated irradiation, in which a sterilizing dose is delivered over time in a series of smaller irradiations, reduces the damage of irradiation in insects. In the present study, we evaluated the effect of fractionated irradiation on male fertilization ability, longevity and mating propensity of E. postfasciatus for a period of 16 days after irradiation.
  • 4 Although fractionated irradiation totalling 150 Gy was found to induce full sterility regardless of the number of individual doses, the mating propensity of male weevils sterilized by fractionated irradiation was maintained for the first 12 days. These results demonstrate that fractionated irradiation can be highly advantageous in programmes aimed at eradication of E. postfasciatus.
  相似文献   

2.
The gamma radiation-induced DNA damage in adult maize weevils, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), was assessed using single-cell electrophoresis (comet assay). Analysis of DNA damage following 0.5 and 1.0 kGy of gamma radiation was performed using cells from 1- and 15-day-old adults. Gamma-irradiated adults from both age groups showed typical DNA fragmentation, whereas cells from non-irradiated adults showed more intact DNA than young S. zeamais. Investigations using the comet assay showed that tail length, % tail DNA and % DNA damage all increased in adults of both age groups when compared to the control insects. A maximum comet length of 227.33 μm was recorded for 15-day-old adults at 24h after irradiation with 1.0 kGy and a minimum of 50.12 μm for 1-day-old adults at 0 h after irradiation with 0.5 kGy. The percentage of DNA damage increased up to 57.31% and 68.15% for 1- and 15-day-old adults, respectively, at 24h after irradiation with 1.0 kGy, whereas only 8.58% and 12.22% DNA damage were observed in the control batches. The results also showed that percentage of DNA damage increased at 24h after irradiation compared to that at 0 h. However, further studies are needed to confirm these results.  相似文献   

3.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation is the effective manner to sterilize mass-reared insects. The negative impacts of this procedure are not limited to damage on reproductive cells. Gamma-radiation damages the epithelial tissue of midgut, which affects the alimentation in insects. Irradiated males alter their mating behavior over time because of the depression of metabolic activity by sterilization. In this study, we evaluated the male mating performance and sexually compatibility of irradiated male Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae) with a 200-Gy dose, as currently used in the SIT program in Okinawa Prefecture, throughout 16 d after irradiation in the laboratory. The mating ability of irradiated males did not differ from that of control males for about a week. However, the mating ability of irradiated male drastically decreased thereafter. We consider that irradiated male C. formicarius elegantulus with a 200-Gy dose had no major effect on male mating behavior approximately for a week after irradiation.  相似文献   

4.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

5.
X-ray-induced mitotic recombination was used to follow the development and function of the female germ line in Drosophila melanogaster. Clones marked by maternal effect mutations which alter the morphology of the egg [fs(1)K10] or the phenotype of the resulting progeny (maroonlike) were produced in trans-heterozygotes irradiated during embryonic, larval, or pupal development or as 5-day-old adults. Judging from the size of clones induced at the blastoderm stage, only five to ten of the pole cells observed on the surface of the embryo contribute to the germ line. Most of the K10 clones induced during embryonic and larval development were associated with mal twin spots, indicating that both daughters of the irradiated germ cell remained in the germ line and gave rise to eggs in the adult. During larval life the number of cells increases logarithmically and reaches a maximum of 110 at 24 hr after pupation. The same value was obtained for 5-day-old adults. In contrast to the mosaic females produced as embryos and larvae, mosaics obtained after pupal and adult irradiations were of two types, those laying only one K10 egg and those laying several K10 eggs distributed over the lifespan of the adult. This result indicates that the stem cell divisions characteristic of the adult period have begun shortly after pupation. About 9 to 11 days are required for an irradiated stem cell to produce its first clonal K10 egg, and two-thirds of this time is spent in the germarium. Each ovariole possesses on the average two to three functioning stem cells. This multiplicity of stem cells was confirmed by the recovery of mosaic ovarioles when mal heterozygotes irradiated as adults or late larvae were stained for aldehyde oxidase activity.  相似文献   

6.
The sterile insect technique (SIT), based on the principles of population and behavioral ecology, is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females; however, the use of gamma radiation to induce sterility negatively affects both somatic cells as well as reproductive cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. It is well known that fractionated‐dose irradiation, in which a sterilizing dose is delivered via a series of smaller irradiations, reduces radiation damage. In the present study, we evaluated the effect of fractionated‐dose irradiation on fertility, longevity, and mating propensity in Cylas formicarius (Summers) (Coleoptera: Brentidae) for 16 days after irradiation. Fractionated‐dose irradiation with 200 Gy induced full sterility regardless of the number of radiation doses. Although the mating propensity of males sterilized by a single 200 Gy dose (the current standard of the Okinawa Prefecture SIT program) was equal to that of non‐irradiated weevils for the first 6 days, the mating propensity of males sterilized by a series of three doses was maintained for at least the first 12 days. These results demonstrated that fractionated‐dose irradiation can be highly advantageous in C. formicarius eradication programs.  相似文献   

7.
In the present experiments the effect of GSM radiation on ovarian development of virgin Drosophila melanogaster female insects was studied. Newly emerged adult female flies were collected and divided into separate identical groups. After the a lapse of certain number of hours-different for each group-the insects (exposed and sham-exposed) were dissected and their intact ovaries were collected and photographed under an optical microscope with the same magnification. The size of the ovaries was compared between exposed and sham-exposed virgin female insects, during the time needed for the completion of oogenesis and maturation of the first eggs in the ovarioles. Immediately after the intact ovaries were photographed, they were further dissected into individual ovarioles and treated for TUNEL and acridine-orange assays to determine the degree of DNA damage in the egg chamber cells. The study showed that the ovarian size of the exposed insects is significantly smaller than that of the corresponding sham-exposed insects, due to destruction of egg chambers by the GSM radiation, after DNA damage and consequent cell death induction in the egg chamber cells of the virgin females as shown in previous experiments on inseminated females. The difference in ovarian size between sham-exposed and exposed virgin female flies becomes most evident 39-45 h after eclosion when the first eggs within the ovaries are at the late vitellogenic and post-vitellogenic stages (mid-late oogenesis). More than 45 h after eclosion, the difference in ovarian size decreases, as the first mature eggs of the sham-exposed insects are leaving the ovaries and are laid.  相似文献   

8.
9.
The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69 and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively.  相似文献   

10.
Abstract Migration of 51Cr-labelled T cells from irradiated mice into lymph nodes of syngeneic unirradiated recipients decreased in a dose-dependent fashion. Influx of labelled T cells between 4 and 24 hr after injection (secondary migration) is more radiosensitive than lymph-node migration of T cells in the first 4 hr (primary migration). Treatment of T cells from irradiated mice in vitro with Con A or with trypsin does not enhance radiation-induced alteration of their migratory properties, but irradiation enhances the effects of Con A and trypsin on T-cell migration. Recovery of primary migration of irradiated T cells is completed 3 months after irradiation; it is probably caused by T-cell renewal. the defect of T-cell secondary migration is more stable: it remains 6 months after irradiation in a dose of 4 Gy. Post-irradiation defects of the T-cell differentiation process as a cause of long-lasting alteration of T-cell secondary migration are discussed.  相似文献   

11.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation not only damages the reproductive cells but the somatic cells as well. The mating behavior of irradiated males may be altered over time due to the depressed metabolic activity brought about by sterilization. In this study, we evaluated the mating behavior (copulation behavior, mating performance, and ability of sperm transfer) of irradiated males in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 16 days after irradiation in the laboratory. The mating performance of males irradiated with a 150 Gy dose, as currently used in the SIT program in Okinawa prefecture for E. postfasciatus, decreased compared to that of control after day 7. As a result, we considered that irradiation had no major effect on male mating behavior for approximately 1 week after irradiation.  相似文献   

12.
Ionizing irradiation is used as a phytosanitary treatment against quarantine pests. A generic treatment of 400 Gy has been approved for commodities entering the United States against all insects except pupae and adults of Lepidoptera because some literature citations indicate that a few insects, namely, the Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae), and the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), are not completely controlled at that dose. Radiotolerance in insects increases as the insects develop, so the minimum absorbed dose to prevent F1 egg hatch for these two species when irradiated as adults was examined. Also, because hypoxia is known to increase radiotolerance in insects, Angoumois grain moth radiotolerance was tested in a hypoxic atmosphere. A dose range of 336-388 Gy prevented F1 egg hatch from a total of 22,083 adult Indianmeal moths. Dose ranges of 443-505 and 590-674 Gy, respectively, prevented F1 egg hatch from a total of 15,264 and 13,677 adult Angoumois grain moths irradiated in ambient and hypoxic atmospheres. A generic dose of 600 Gy for all insects in ambient atmospheres might be efficacious, although many fresh commodities may not tolerate it when applied on a commercial scale.  相似文献   

13.
The effects of irradiation on egg, larval, and pupal development, and adult reproduction in Mexican leafroller, Amorbia emigratella Busck (Lepidoptera: Tortricidae), were examined. Eggs, neonates, early instars, late instars, early pupae, and late pupae were irradiated at target doses of 60, 90, 120, or 150 Gy, or they were left untreated as controls in replicated factorial experiments. Survival to the adult stage was recorded. Tolerance to radiation increased with increasing age and developmental stage. A radiation dose of 90 Gy applied to neonates and early instars prevented adult emergence. A dose of 150 Gy was not sufficient to prevent adult emergence in late instars or pupae. The effect of irradiation on sterility was examined in late pupae and adult moths. For progeny produced by insects treated as late pupae, a total of three out of 3,130 eggs hatched at 90 Gy, 0 out of 2,900 eggs hatched at 120 Gy, and 0 out of 1,700 eggs hatched at 150 Gy. From regression analysis, the dose predicted to prevent egg hatch from the progeny of irradiated late pupae was 120 Gy, with a 95% confidence interval of 101-149 Gy. The late pupa is the most radiotolerant stage likely to occur with exported commodities; therefore, a minimum absorbed radiation dose of 149 Gy (nominally 150 Gy) has potential as a quarantine treatment. Reciprocal crosses between irradiated and unirradiated moths demonstrated that males were more radiotolerant than females. Irradiation of female moths at a target dose of 90 Gy before pairing and mating with irradiated or unirradiated males resulted in no viable eggs, whereas irradiated males paired with unirradiated females produced viable eggs at 90 and 150 Gy.  相似文献   

14.
The role of symbiotic microbes in insects, especially the beneficial character of this interaction for insects, has received much attention in recent years as it has been related to important aspects of the host insects' biology such as development, reproduction, survival, and fitness. Among insect hosts, tephritid fruit flies are well known to form beneficial associations with their symbionts. To control these destructive agricultural pests, environmentally friendly approaches, like the sterile insect technique as a component of integrated pest management strategies, remain most effective. In this study, changes in the bacterial profile of mass‐reared oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), were examined in both larval and adult stages and also after irradiation by employing a 16S rRNA gene‐based Illumina sequencing approach. Proteobacteria was the prevalent bacterial phylum in non‐irradiated adults and larvae. Alphaproteobacteria was the most abundant class in larvae but almost absent in adults, which was dominated by Gammaproteobacteria. Firmicutes were present in both developmental stages but at lower relative abundance. At genus level, Acetobacter prevailed in the larval stage and members of the Enterobacteriaceae family in adults. Irradiated samples exhibited higher diversity and richness indices compared to the non‐irradiated oriental fruit flies, whereas no significant changes were observed between the two developmental stages of the non‐irradiated samples. Lactobacillus, members of the Orbacecae family, and Morganella were detected but to a lesser degree upon irradiation, whereas the relative abundance of Lactococcus and Orbus increased. The bacterial profile of larvae appeared to be different compared to that of adult B. dorsalis flies. The subsequent application of irradiation at the pupal stage led to the development of different microbiota between treated and untreated samples, affecting diversity and operational taxonomic unit composition. Irradiated samples of oriental fruit flies were characterized by higher species diversity and richness.  相似文献   

15.
 The objectives of these studies were to determine if (1) hypertrophy-stimulated myogenic regulatory factor (MRF) mRNA increases occur in the absense of proliferating satellite cells, and (2) acute hypertrophy occurs without satellite cell proliferation. Adult and aged quails were exposed to 0 or 2500 Rads gamma irradiation, and then wing muscles were stretch-overloaded for 3 or 7 days. MRF mRNA levels in stretch-overloaded and contralateral anterior latissimus dorsi (ALD) muscles were determined after 3 days; hypertrophy was determined after 7 days. The elimination of proliferating cells in irradiated muscles was verified histologically by bromodeoxyuridine incorporation. Relative levels of MRF4, MyoD, and myogenin mRNA were elevated 100%–400% in stretch-overloaded ALD muscles from irradiated adult quails indicating that satellite cell proliferation was not a prerequisite for MRF mRNA increases. Myogenin was the only MRF that exhibited mRNA increases that were lowered by irradiation. This suggests that satellite cells contribute only to myogenin mRNA increases in non-irradiated adult muscles following 3 days of stretch-overload. Stretch-overloaded ALD muscles from aged quails had a relative increase in myogenin mRNA of ∼150%. The myogenin increase was the same in non-irradiated and irradiated aged animals and also the same as that in stretch-overloaded muscles from irradiated adult quails. Together, these data indicate that attenuated increases in MRF expression in muscles from aged animals are attributable to lower satellite cell MRF expression. ALD muscle masses and protein contents in adult irradiated quails approximately doubled after 7 days of stretch-overload demonstrating hypertrophy despite the elimination of satellite cell proliferation. Received: 5 June 1998 / Accepted: 19 November 1998  相似文献   

16.
The combined effect of X-irradiation and transposon mobility on the frequencies of X-linked recessive lethals and dominant lethals was investigated in female hybrids in the P-M system of hybrid dysgenesis. X-linked lethals were measured in G2 hybrid dysgenic females whose X chromosome was derived from the M X P cross. To test for additivity or synergism, the mutation rate in irradiated dysgenic females was compared to that of unirradiated females as well as to irradiated nondysgenic hybrid females derived from M X M crosses. Eggs collected for 2 days after irradiation, were represented by the more radiation-sensitive A and B oocytes (about 75%) and the least sensitive C oocytes (about 25%). The production of X-linked lethal events in X-irradiated dysgenic females was 8.1%, as compared to 4.5% in dysgenic controls and 3.4% in irradiated, nondysgenic controls, demonstrating an additive effect of radiation and dysgenesis-induced genetic damage. The effect of irradiation on sterility of dysgenic hybrid females was a negative one, resulting in 20% less sterility than expected from an additive effect. The combined effect of radiation and dysgenesis on dominant lethality tested in A, B and C oocytes of the same hybrid females was synergistic. Egg broods collected for 3.5 days after irradiation showed that significantly more damage was induced in the presence of ionizing radiation in dysgenic females than in their nondysgenic counterparts. This effect was most obvious in B and C oocytes. The synergism observed may be related to the inability of cells to repair the increased number of chromosome breaks induced both by radiation and transposon mobility.  相似文献   

17.
Nitric oxide (NO) stimulated the activity of plasma membrane H+-ATPase, 5′-nucleotidase, peroxidase, ascorbate peroxidase and glutathione reductase in ultraviolet B (UV-B) irradiated Chlorella pyrenoidosa. It also boosted the activity of nitrogen-metabolism enzymes such as nitrate reductase, nitrite reductase, glutamine synthetase, which were inhibited by UV-B irradiation. The chlorophyll fluorescence ratio (Fv/Fm) of the UV-B irradiated algae and decreased continuously after the cells were transferred to UV-B irradiation. A continuing decrease of the Fv/Fm was observed even after the cells were transferred to photosynthetically active radiation (PAR). After adaptation for 8 h under PAR (after treatment with nitric oxide), Fv/Fm recovered to 55 % of normal levels — without NO the value approached zero. Exogenous NO stopped the decay of chlorophyll and thylakoid membrane in cells exposed to UV-B irradiation. NO plays probably a key role in damage induced by UV-B irradiation in green algae.  相似文献   

18.
Summary Pregnant mice were treated on the 1st, 2nd, and 3rd day of pregnancy by a single dose of 300 R X-rays. Uterine dissections at day 6 p.c. topographically revealed decrease of the implantation sites from 9.67 per female in the controls to 8.00 in females irradiated on day 1, to 6.63 in females irradiated on day 2, and to 7.00 in females irradiated on day 3 p.c. Among a number of 22 implantations after irradiation on day 1, 19 after irradiation on day 2 and 11 after irradiation on day 3, however no living embryo could be detected on histological examination. The degree of damage as indicated by the total resorptions was highest (94,7%) after irradiation on day 2 p.c., and lowest (31,8%) after irradiation on day 1 p.c. Since the decidual cell reaction was either unaffected or only slightly reduced after irradiation on day 2 p.c. as indicated by cytomorphological criteria and the alkaline phosphatase reaction, not maternal effects but direct effects only of the irradiation on the embryo must account for embryonic deaths.  相似文献   

19.
Sequential necropsies and histologic evaluations of young adult beagle dogs were performed after irradiation of the thorax. Total doses to the heart were 36, 44, or 52 Gy given in 4-Gy fractions in 4 weeks. One month after irradiation there was little histologic evidence of damage visible by light microscopy. However, ventricular and septal weights were increased, probably due to edema. At 3 months damage to endothelial and mesothelial cells was evident. By 12 months the myocardium was thinned and focal degeneration and loss of muscle cells and Purkinje fibers were observed. There was extensive subendocardial and epicardial fibrosis as well as intimal proliferation in coronary arteries. Morphometric analyses were performed on the myocardium, pericardium, atria, and aorta. There was a slight increase in perivascular connective tissue in the myocardium. The pericardium was increased in thickness and the ratio of smooth muscle to elastin was decreased in the aorta. Severe fibrosis occurred only in the right atrium. At 1 year there was no clinical evidence of heart failure; however, evidence of myocardial damage was present histologically and functionally. Additional stress and continued aging are likely to enhance the damage and lead to serious complications. The interactions of irradiated lung and heart require further investigation.  相似文献   

20.
The present study involves red palm weevil adults Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) irradiated with 5, 10 or 15 Gy of gamma radiation. The biological effects of gamma irradiation on the F1 adult females, descendant of irradiated parental male pupae, were studied. The percentage egg hatch decreased significantly, as the dose increased, compared with the untreated control.The effect of gamma irradiation on the morphology of the ovaries showed a remarkable effect on size, shape and measurement of the paired ovaries.Additionally, histological studies showed some damages by irradiation of the oocytes maturation, which increased with increasing dose. These symptoms were elongation of the terminal filament, rupture, separation, or shrinkage of external sheath and follicular epithelium, degenerated or absent of nurse cells, and ruptured oocytes at 15 Gy.Vacuolation appeared in different degrees inside the oocytes and the nurse cells were absent in some areas. The damage in the oocytes was more severe as the dose was increased. The follicular epithelium was thin, oocytes clumped together throughout the ovariole causing some oocytes become abnormal or rectangular in shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号